|Table of Contents|

The main factors and rules of stress shadow of perpendicular cracks(PDF)

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

Issue:
2017年No.4(331-440)
Page:
344-351
Research Field:
环境与能源
Publishing date:

Info

Title:
The main factors and rules of stress shadow of perpendicular cracks
Author(s):
Wang Daobing123 Zhou Fujian1 Ge Hongkui1 Sergio Zlotnik2 Yang Xiangtong4 and Peng Jinlong5
1) Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing 102249, P.R.China
2) School of Civil Engineering, Technical University of Catalonia, Barcelona E-08034, Spain
3) Institute of Oil Production Engineering, Research Institute of Exploration & Development, PetroChina, Beijing 100083, P.R.China
4) Tarim Oilfield Company, PetroChina, Kuerle 841000, Xinjiang Uygur Autonomous Region, P.R.China
5) The Second Oil Extraction Plant of Daqing Oilfield Company Limited, PetroChina, Daqing 163414, Heilongjiang Province, P.R.China
Keywords:
stress interference fracture network fracturing perpendicular crack finite element method diverting agent degradable fiber fluid pressure fluid-solid coupling linear elastic mechanics
PACS:
TE 355
DOI:
10.3724/SP.J.1249.2017.04344
Abstract:
Based on elasticity theory, we use numerical Galerkin finite element discretization method and implement Matlab finite element code to simulate “stress shadow” distributions of mutual orthogonal fractures. The principal stress and principal distributions have the symmetry characteristic on the intersection (coordinate origin). The relationships between stress shadow and flow pressure ratio, pore pressure, fluid pressure and horizontal stress contract are analyzed, respectively. By these techniques of variable displacement construction, changing the viscosity of the fracturing fluid, exploitation of oil and gas wells changing pump rate and fracturing fluid viscosity, reducing pore pressure and increasing the injection volume, taking the advantages of shadow effect, it is likely to produce a complex fracture network.

References:

[1] Suppachoknirun T, Tutuncu A N, Kazemi H. Evaluation of multistage hydraulic fracturing techniques for production optimization in naturally fractured reservoirs using coupled geomechanics fracture and flow model[C]// International Petroleum Technology Conference. Bangkok, Thailand: International Petroleum Technology Conference, 2016: 1-24.doi: IPTC-18916-MS.
[2] Skomorowski N, Dussealut M B, Gracie R.The use of multistage hydraulic fracture data to identify stress shadow effects[C]// 49th US Rock Mechanics/Geomechanics Symposium. San Francisco, USA:American Rock Mechanics Association,2015:1-8. doi: ARMA-2015-624.
[3] Wu Kan, Olson J, Balhoff M T,et al.Numerical analysis for promoting uniform development of simultaneous multiple fracture propagation in horizontal wells[C]// SPE Annual Technical Conference and Exibition. Houston, USA:Society of Petroleum Engineers,2015:1-9. doi: SPE-174869-MS.
[4] Stepanova L, Roslyakov P. Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium[J]. International Journal of Solids and Structures, 2016, 100/101: 11-28.
[5] Damjanac B, Cundall P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71: 283-294.
[6] Kumar D, Ghassemi A. 3D poroelastic simulation and analysis of multiple fracture propagation and refracturing of closely-spaced horizontal wells[C]// 50th US Rock Mechanics/Geomechanics Symposium. Houston, USA: American Rock Mechanics Association, 2016: 1-12. doi: ARMA-2016-136.
[7] Pankaj P, Gakhar K, Lindsay G. When to refrac? Combination of reservoir geomechanics with fracture modeling and reservoir simulation holds the answer[C]// SPE Asia Pacific Oil & Gas Conference and Exhibition. Perth, Australia: Society of Petroleum Engineers, 2016: 1-21. doi:SPE-182161-MS.
[8] Curnow J S, Tutuncu A N. A coupled geomechanics and fluid flow modeling study for hydraulic fracture design and production optimization in an eagle ford shale oil reservoir[C]// SPE Hydraulic Fracturing Technology Conference. The Woodlands, USA: Society of Petroleum Engineers, 2016: 1-12. doi: SPE-179165-MS.
[9] Bartko K, McClelland K, Sadykov A, et al. Holistic approach to engineered diversion-aided completion providing new method of fracture isolation[C]// SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, USA: Society of Petroleum Engineers, 2017:1-14. doi: SPE-184824-MS.
[10] Cafaro D C, Drouven M G, Grossmann I E. Optimization models for planning shale gas well refracturetreatments[J]. AIChE Journal, 2016, 62(12): 4297-4307.
[11] 汪道兵, 葛洪魁, 周福建, 等. 注入流体诱导应力场模拟计算[J]. 东北石油大学学报, 2015, 39(2): 85-93.
Wang Daobing, Ge Hongkui, Zhou Fujian, et al. Numerical simulation of the injected fluid induced stress field[J]. Journal of Northeast Petroleum University, 2015, 39(2): 85-93.(in Chinese)
[12] 汪道兵. 直井纤维暂堵转向压裂裂缝启裂与延伸数学模型研究[D]. 成都: 成都理工大学, 2013.
Wang Daobing. Study on the mathematical model about the fiber temporary plugging diverting fracturing crack initiation and propagation of the vertical wells[D]. Chengdu: Chengdu University of Technology, 2013.(in Chinese)
[13] Fjar E, Holt R M, Raaen A M, et al. Petroleum related rock mechanics[M]. 2nd ed.. Amsterdam, The Netherlands: Elsevier, 2008.
[14] John Conrad Jaeger, Neville G W Cook, Robert Zimmerman. Fundamentals of rock mechanics[M]. 4th ed.. Oxford, UK: Wiley-Blackwell, 2007.
[15] Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: its basis and fundamentals[M]. 7th ed.. Oxford, UK: Elsevier, 2013.
[16] Hughes T J. The finite element method: linear static and dynamic finite element analysis[M]. New Jersey, USA: Courier Corporation, 2012.
[17] Pogacnik J, Elsworth D, O’Sullivan M, et al. A damage mechanics approach to the simulation of hydraulic fracturing/shearing around a geothermal injection well[J]. Computers and Geotechnics, 2016,71:338-351.
[18] Detournay E. Mechanics of hydraulic fractures[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 311-339.
[19] Signorini M, Zlotnik S, Díez P. Proper Generalized Decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems[J]. International Journal for Numerical Methods in Engineering, 2017, 109(8): 1085-1102.
[20] 周福建, 汪道兵, 伊向艺, 等. 迫使碳酸盐岩油气藏裂缝向下延伸的酸压技术[J]. 石油钻采工艺, 2012, 34(6): 65-68.
Zhou Fujian, Wang Daobing, Yi Xiangyi, et al. Acid fracturing technology forcing fracture to propagate downward in carbonate reservoirs[J]. Oil Drilling & Production Technology, 2012, 34(6): 65-68.(in Chinese)
[21] 周福建, 伊向艺, 杨贤友, 等. 提高采收率纤维暂堵人工裂缝动滤失实验研究[J]. 钻采工艺, 2014, 37(4): 83-86.
Zhou Fujian, Yi Xiangyi, Yang Xianyou, et al. Dynamic filtration experiment study on EOR fiber on bridging the artificial fracture[J]. Drilling & Production Technology, 2014, 37(4): 83-86.(in Chinese)
[22] 汪道兵, 周福建, 葛洪魁, 等. 纤维暂堵人工裂缝附加压差影响因素分析[J]. 科技导报, 2015, 33(22): 73-77.
Wang Daobing, Zhou Fujian, Ge Hongkui, et al. Analysis of factors influencing additional pressure drop of fiber-assisted temporary blocking of an artificial fracture[J]. Science and Technology Review, 2015, 33(22):73-77.(in Chinese)
[23] Wang Daobing, Zhou Fujian, Ding Wei, et al. A numerical simulation study of fracture reorientation with a degradable fiber-diverting agent[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 215-225.
[24] Wang Daobing, Zhou Fujian, Ge Hongkui, et al. An experimental study on the mechanism of degradable fiber-assisted diverting fracturing and its influencing factors[J]. Journal of Natural Gas Science and Engineering, 2015, 27(1): 260-273.
[25] Gomaa A M, Spurr N, Pirogov A, et al. Combining soluble particle diverter with specially engineered proppant to enhance fracture complexity and post-fracture conductivity[C]// SPE Annual Technical Conference and Exhibition. Dubai, UAE: Society of Petroleum Engineers, 2016: 1-14. doi: SPE-181486-MS.

Memo

Memo:
-
Last Update: 2017-06-26