|Table of Contents|

Calculation of thermal parameters of frozen soil based on the closely spaced soil column model(PDF)

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

Issue:
2017年No.4(331-440)
Page:
393-399
Research Field:
土木建筑工程
Publishing date:

Info

Title:
Calculation of thermal parameters of frozen soil based on the closely spaced soil column model
Author(s):
Chen Zhixiang12 Li Shunqun12 Xia Jinhong3 Wang Kai12 and Gui Chao3
1) School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, P.R.China
2) Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin 300384, P.R.China
3) School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, Henan Province, P.R.China
Keywords:
geotechnical engineering frozen soil thermal parameters soil column model temperature field unfrozen water latent heat
PACS:
TU 752
DOI:
10.3724/SP.J.1249.2017.04393
Abstract:
In order to evaluate the influence of thermal parameters on the calculation of transient temperature field of saturated frozen soil, the influencing factors of frozen soil temperature field are analyzed. A kind of soil column geometric model is put forward, and the outside of the soil column is filled with pore water. Assuming that the freezing occurs at the center of the enclosing area of the soil column and develops in column form, according to the calculation of the volume of soil, water and ice in the body at any time, and the calculation method of the soil thermal conductivity of Johansen, the relationship between the unfrozen water content and the thermal conductivity is established. According to the weighting calculation principle of specific heat and the relative density of soil and the density of water and ice, the mass ratio of soil column in different freezing time is obtained, then the relationship between unfrozen water content and specific heat is determined. According to the unfrozen water content of soil column model at different freezing time, the relationship between latent heat and freezing time is established. Based on the measured thermal conductivity and the soil column model, the relationship between specific heat and latent heat with negative temperature is obtained. The thermal conductivity, specific heat and latent heat of frozen soil under different negative temperature conditions obtained from the model are analyzed by numerical calculation software ABAQUS, and the calculated values of frozen soil temperature field are obtained. Comparing the calculated values with the measured results, it is shown that the thermal parameters obtained from the model can predict the temperature field of frozen soil.

References:

[1] 原喜忠, 李宁, 赵秀云, 等. 非饱和(冻)土导热系数预估模型研究[J]. 岩土力学, 2010, 31(9): 2689-2694.
Yuan Xizhong, Li Ning, Zhao Xiuyun, et al. Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J]. Rock and Soil Mechanics, 2010, 31(9): 2689-2694.(in Chinese)
[2] 蔡海兵, 黄以春, 庞涛. 地铁联络通道三维冻结温度场有限元分析[J]. 铁道科学与工程学报, 2015, 12(6): 1436-1443.
Cai Haibing,Huang Yichun,Pang Tao. Finite element analysis on 3D freezing temperature field in metro connected aisle construction[J].Journal of Railway Science and Engineering, 2015, 12(6): 1436-1443.(in Chinese)
[3] 何敏, 李宁, 高焕焕,等. 带相变瞬态温度场问题的扩展有限元解析[J]. 冰川冻土, 2016, 38(4): 1044-1051.
He Min, Li Ning, Gao Huanhuan, et al. Extended finite element method analysis for the transient temperature field with phase change[J]. Journal of Glaciology and Geocrylogy, 2016, 38(4): 1044-1051.(in Chinese)
[4] 胡向东, 陈锦, 汪洋,等. 环形单圈管冻结稳态温度场解析解[J]. 岩土力学, 2013, 34(3): 874-880.
Hu Xiangdong, Chen Jin, Wang Yang, et al. Analytical solution to steady-state temperature field of single-circle-pipe freezing[J]. Rock and Soil Mechanics, 2013, 34(3): 874-880.(in Chinese)
[5] 陶兆祥, 张景森. 大含水(冰)量融冻土导热系数的测定研究[J]. 冰川冻土, 1983, 5(2): 75-80.
Tao Zhaoxiang, Zhang Jingsen. The thermal conductivity of thawed and frozen soils with high water (ice) content[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 75-80.(in Chinese)
[6] 刘焕宝, 张喜发, 赵意民, 等. 冻土导热系数热流计法模拟试验及成果分析[J]. 冰川冻土, 2011, 33(5): 1127-1131.
Liu Huanbao, Zhang Xifa, Zhao Yimin, et al. Frozen soil thermal conductivity determined by using heat-flow meter: simulation experiment and result analysis[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1127-1131.(in Chinese)
[7] 周家作, 韦昌富, 魏厚振,等. 线热源法测量冻土热参数的适用性分析[J]. 岩土工程学报, 2016, 38(4): 681-687.
Zhou Jiazuo, Wei Changfu, Wei Houzhen, et al. Applica- bility of line heat source method in measuring thermal parameters of frozen soil[J] Chinese Journal of Geote- chnical Engineering, 2016, 38(4): 681-687.(in Chinese)
[8] 陈琳, 喻文兵, 杨成松, 等. 基于微观结构的青藏高原风积沙导热系数变化机理研究[J]. 冰川冻土, 2014, 36(5): 1220-1226.
Chen Lin, Yu Wenbing, Yang Chengsong, et al. Conductivity of aeolian sand on the Tibetan Plateau based on microstructure[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1220-1226.(in Chinese)
[9] 张楠, 夏胜全, 侯新宇,等. 土热传导系数及模型的研究现状和展望[J]. 岩土力学, 2016, 37(6): 1550-1562.
Zhang Nan, Xia Shengquan, Hou Xinyu, et al. Review on soil thermal conductivity and prediction model[J]. Rock and Soil Mechanics, 2016, 37(6): 1550-1562.(in Chinese)
[10] 赵刚, 陶夏新, 刘兵. 原状土冻融过程中水分迁移试验研究[J]. 岩土工程学报, 2009, 31(12): 1952-1957.
Zhao Gang, Tao Xiaxin, Liu Bing. Experimental study on water migration in undisturbed soil during freezing and thawing process[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1952-1957.(in Chinese)
[11] 王铁行, 刘自成, 卢靖. 黄土导热系数和比热容的实验研究[J]. 岩土力学, 2007, 28(4): 655-658.
Wang Tiehang, Liu Zicheng, Lu Jing. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 2007, 28(4): 655-658.(in Chinese)
[12] 冷毅飞, 张喜发, 杨凤学,等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764.
Leng Yifei, Zhang Xifa, Yang Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764.(in Chinese)
[13] 孙斌祥, 徐斅祖, 赖远明, 等. 块石的热扩散系数和导热系数确定方法[J]. 冰川冻土, 2002, 24(6): 790-795.
Sun Binxiang, Xu Xiaozu, Lai Yuanming, et al. Determination of Thermal Diffusivity and Conductivity on Ballast[J]. Journal of Glaciology and Geocryology, 2002, 24(6): 790 -795.(in Chinese)
[14] 肖衡林, 吴雪洁, 周锦华. 岩土材料导热系数计算研究[J]. 路基工程, 2007(3): 54-56.
Xiao Henglin, Wu Xuejie, Zhou Jinhua. Study on calculation of thermal conductivity of geotechnical materials[J]. Subgrade Engineering, 2007(3): 54-56.(in Chinese)
[15] 马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640.
Ma Wei, Wang Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640.(in Chinese)
[16] Johansen B A, Branko L. Frozen ground engineering[M]. New Jersey, USA: John Wiley & Son, 2004.
[17] 王彦洋. 冻土的热参数与土冻结过程的热力耦合分析[D]. 天津: 天津城建大学, 2015.
Wang Yanyang. The analysis of thermal parameters for frozen soil and coupled thermal-stress for the process of soil freezing[D]. Tianjin: Tianjin Chengjian University, 2016.(in Chinese)
[18] 刘月, 王正中, 王羿, 等. 考虑水分迁移及相变对温度场影响的渠道冻胀模型[J]. 农业工程学报, 2016, 32(17): 83-88.
Liu Yue, Wang Zhengzhong, Wang Yi, et al. Frost heave model of canal considering influence of moisture migration and phase transformation on temperature field[J]. Journal of the Chinese Society of Agricultural Engineering, 2016, 32(17): 83-88.(in Chinese)
[19] 于珊, 李顺群, 冯慧强. 土的导热系数与其干密度、饱和度和温度的关系[J]. 天津城建大学学报, 2015(3): 172-176.
Yu Shan, Li Shunqun, Feng Huiqiang. Relationship among soil’s thermal conductivity, dry density, saturation and temperature[J]. Journal of Tianjin Chengjian University, 2015(3): 172-176.(in Chinese)

[20] 王丽霞, 胡庆立, 凌贤长, 等. 青藏铁路冻土未冻水含量与热参数试验[J]. 哈尔滨工业大学学报, 2007, 39(10): 1660-1663.
Wang Lixia, Hu Qingli, Ling Xianchang, et al. Test study on unfrozen water content and thermal parameters of qinghai-tibet railway frozen silty clay[J]. Journal of Harbin Institute of Technology, 2007, 39(10): 1660-1663.(in Chinese)

Memo

Memo:
-
Last Update: 2017-06-26