|Table of Contents|

Effect of axial tensile and compressive loads on transport properties of cement mortar(PDF)

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

Issue:
2017年No.4(331-440)
Page:
408-414
Research Field:
土木建筑工程
Publishing date:

Info

Title:
Effect of axial tensile and compressive loads on transport properties of cement mortar
Author(s):
Wang Yaocheng1 Wang Shaohua1 Zhong Zhenhao1Liu Wei1 Dong Biqin1 and Guo Junhui2
1)College of Civil Engineering, Shenzhen University, Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong Province, P.R.China
2)No.6 Branch, China Communications Construction Company Second Harbor Engineering Co.Ltd., Wuhan 430000, Hubei Province, P.R.China
Keywords:
structural engineering disaster prevention and reduction engineering mortar axial tensile and compressive loads carbonation chloride ingress multiphase transport model
PACS:
TU 502
DOI:
10.3724/SP.J.1249.2017.04408
Abstract:
Different degree of axial non-destructive compressive and tensile loadings are applied on cement mortar to study the influence of continuous loading on speed of carbonation and chloride ingress. Results show that within the range of the applied forces, compressive or tensile loading decreases or increases the ingress speed of CO2 and Cl-, respectively. Comparing with that for carbonation, influence of loading on speed of Cl- ingress is more obvious. In comparison to that of tensile loading, compressive force may lead to more significant impact on transport properties.

References:

[1] Samaha R, Hover C. Influence of micro-cracking on the mass transport properties of concrete[J]. ACI Materials Journal, 1992, 89(4): 416-424.
[2] Saito M, Ishimori H. Chloride permeability of concrete under static and repeated compressive loading[J]. Cement and Concrete Research, 1995, 25(4): 803-808.
[3] 方永浩,张亦涛,章凯,等.弯曲荷载对硬化水泥浆体和砂浆碳化过程的影响[J].材料导报,2004,18(10):97-99.
Fang Yonghao, Zhang Yitao, Zhang Kai, et al. Influence of flexural load on the carbonation processes of cement paste and mortar[J]. Materials Review, 2004, 18(10): 97-99.(in Chinese)
[4] Ma Zhiming, Zhao Tiejun, Xiao Jianzhuang, et al. Effect of applied loads on water and chloride penetrations of strain hardening cement-based composites[J]. Journal of Materials in Civil Engineering, 2016, 28(9): 04016069.
[5] 金伟良,延永东,王海龙.氯离子在受荷混凝土内的传输研究进展[J].硅酸盐学报,2010,38(11):2217-2224.
Jin Weiliang, Yan Yongdong, Wang Hailong. Research progress on the chloride transportation in stressed concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(11): 2217-2224.(in Chinese)
[6] Wang Junjie, Basheer P A M, Nanukuttan S V, et al. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete[J]. Construction and Building Materials, 2016, 108: 56-66.
[7] Wang Hailong, Dai Jianguo, Sun Xiaoyan, et al. Time-dependent and stress-dependent chloride diffusivity of concrete subjected to sustained compressive loading[J]. Journal of Materials in Civil Engineering, 2016, 28(8): 04016059.
[8] Sun Jiaying, Lu Liguo. Coupled effect of axially distributed load and carbonization on permeability of concrete[J]. Construction and Building Materials, 2015, 79:9-13.
[9] 付传清,屠一军,金贤玉,等.荷载作用对混凝土中氯盐传输的影响研究进展[J].硅酸盐学报,2015,43(4):400-410.
Fu Chuanqing, Tu Yijun, Jin Xianyu, et al. Load effect on chloride transportation in concrete: a short review[J]. Journal of the Chinese Ceramic Society, 2015, 43(4):400-410.(in Chinese)
[10] Li Longyuan, Xia Jin, Lin S S. A multi-phase model for predicting the effective diffusion coefficient of chlorides in concrete[J]. Construction and Building Materials, 2012, 26(1): 295-301.
[11] Zheng Jianjun, Wong H S, Buenfeld N R. Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model[J]. Cement and Concrete Research, 2009, 39(9): 805-813.
[12] Liu Qingfeng, Yang Jian, Xia Jin, et al. A numerical study on chloride migration in cracked concrete using multi-component ionic transport models[J]. Computational Materials Science, 2015, 99: 396-416.
[13] Liu Qingfeng, Easterbrook D, Yang Jian, et al. A three-phase, multi-component ionic transport model for simulation of chloride penetration in concrete[J]. Engineering Structures, 2015, 86: 122-133.
[14] Sun Guowen, Zhang Yunsheng, Sun Wei, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete[J]. Construction and Building Materials, 2011, 25(10): 3820-3831.
[15] Xu Jun, Li Fumin. A meso-scale model for analyzing the chloride diffusion of concrete subjected to external stress[J]. Construction and Building Materials, 2017, 130: 11-21.
[16] 张云莲,李家康.混凝土均匀受拉强度试验中的几个问题[J].工业建筑,2001,31(8):43-45.
Zhang Yunlian, Li Jiakang. Some problems of concrete homogenous tensile strength[J]. Industrial Construction, 2001, 31(8): 43-45.(in Chinese)
[17] 万小梅,苏卿,赵铁军,等.单轴受压混凝土的微裂缝和氯离子侵入性[J].土木建筑与环境工程,2013(1):104-110.
Wan Xiaomei, Su Qing, Zhao Tiejun, et al. Microcracking and chloride penetration of concrete under uniaxial compression[J]. Journal of Civil, Architectural and Environmental Engineering, 2013(1): 104-110.(in Chinese)
[18] 卞雷,方永浩.应力环境下混凝土氯离子侵蚀规律的试验研究[J].水运工程,2009(10):20-24.
Bian Lei, Fang Yonghao. Test research of chloride penetration in concrete in different stress states[J]. Port and Waterway Engineering, 2009(10): 20-24.(in Chinese)
[19] 赵尚传,贡金鑫,水金锋.弯曲荷载作用下水位变动区域混凝土中氯离子扩散规律试验[J].中国公路学报, 2007,20(4):76-82.
Zhao Shangchuan, Gong Jinxin, Shui Jinfeng. Test of chloride diffusion rules in concrete at tidal zone under flexural load[J]. China Journal of Highway and Transport, 2007, 20(4): 76-82.(in Chinese)
[20] 付传清,屠一军,金贤玉,等.荷载和环境共同作用下混凝土中氯离子传输的试验研究[J].水利学报,2016,47(5):674-683.
Fu Chuanqing, Tu Yijun, Jin Xianyu, et al. Experimental study on the chloride transportation in concrete under environment and loading coupling conditions[J]. Journal of Hydraulic Engineering, 2016, 47(5): 674-683.(in Chinese)
[21] 田浩,李国平,刘杰,等.受力状态下混凝土试件碳化试验研究[J].同济大学学报自然科学版,2010,38(2):200-204.
Tian Hao, Li Guoping, Liu Jie, et al. Experimental research on carbonation of forced concrete specimens[J]. Journal of Tongji University Natural Science, 2010, 38(2): 200-204.(in Chinese)
[22] 肖佳,勾成福.混凝土碳化研究综述[J].混凝土,2010(1):40-43.
Xiao Jia, Gou Chengfu. Overview of the research for concrete carbonation[J]. Concrete, 2010(1): 40-43.(in Chinese)
[23] 涂永明,吕志涛.应力状态下混凝土结构的盐雾侵蚀试验研究[J].工业建筑,2004,34(5):1-3.
Tu Yongming, Lü Zhitao. The experimental research on prestressed concrete structure under salt fog corrosion environment[J]. Industrial Construction, 2004, 34(5): 1-3.(in Chinese)
[24] 王青,刘星,徐港,等. 混凝土碳化深度酚酞与pH测试值的相关性研究[J].混凝土, 2016(4):13-16.
Wang Qing, Liu Xing, Xu Gang, et al. Correlation study of concrete carbonation depth values tested by phenolphthalein and pH value[J]. Concrete, 2016(4):13-16.(in Chinese)
[25] Baroghel-Bouny V, Belin P, Maultzsch M, et al. AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 2: Non-steady-state migration tests and chloride diffusion coefficients[J]. Materialse and Structures, 2007, 40(8): 783-799.

Memo

Memo:
-
Last Update: 2017-06-26