|Table of Contents|

Assessing the effect of collagen cross-linking by quantitative measurement of corneal viscoelasticity(PDF)

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

Issue:
2017年No.4(331-440)
Page:
428-433
Research Field:
电子与信息科学
Publishing date:

Info

Title:
Assessing the effect of collagen cross-linking by quantitative measurement of corneal viscoelasticity
Author(s):
Zhang Pengpeng Gao Xuehua Wang Qingmin Lyu Zhen and Zhang Xinyu
National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, Shenzhen University, Shenzhen 518060, P.R.China
Keywords:
biomedical measurement medical ultrasound ultrasound elastography acoustic radiation force cornea viscoelasticity collagen cross-linking
PACS:
R 318.01; R 445.1
DOI:
10.3724/SP.J.1249.2017.04428
Abstract:
This study establishes an experimental platform based on VerasonicsTM Vantage 256 ultrasonic open system, and uses the acoustic radiation force to excite the corneal vibration and uses plane wave imaging to detect A0 mode Lamb wave. The corneal shear elastic modulus and shear viscosity are estimated based on Lamb wave dispersion characteristics. In order to validate the effectiveness of this system, two kinds of CXL treatments are introduced to treat bovine corneas, and the effect of the treatment with different reagent and UV exposure duration are evaluated. The results show that the CXL with the addition of glutaraldehyde (0.1% mass concentration) in riboflavin solution induces significantly higher increase in elasticity in comparison with those without glutaraldehyde. The elasticity of the group with glutaraldehyde after 5, 10, 30 and 60 min UVA exposure increases by 148.78%、 335.68%, 392.59% and 250.47%, respectively, in comparison with the groups without glutaraldehyde.

References:

[1] Sykakis E, Karim R, Evans J R, et al. Corneal collagen cross-linking for treating keratoconus [J]. The Cochrane Database of Systematic Reviews, 2015, 3(3): CD10621.
[2] Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue [J]. Experimental Eye Research, 1998, 66(1): 97-103.
[3] 陈世豪,王勤美.重视角膜胶原交联术再眼科的临床应用和研究[J].中华眼视光与视觉科学杂志,2015,17(3):136-139.
Chen Shihao, Wang Qinmei. Attaching importance to the clinical application and research of corneal collagen cross-linking in ophthalmology [J]. Chinese Journal of Optometry Ophthalmology & Visual Science, 2015, 17(3): 136-139.(in Chinese)
[4] Boyce B L, Jones R E, Nguyen T D, et al. Stress-controlled viscoelastic tensile response of bovine cornea.[J]. Journal of Biomechanics, 2007,40(11):2367-2376.
[5] Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas[J]. Experimental Eye Research, 2008,86(5):783-790.
[6] Gualini M M, Iqbal S, Sixt W, et al. Broader corneal characterization with PulseESPI applied to elasticity measurements[J]. European Journal of Ophthalmology, 2010,20(2):306-309.
[7] Scarcelli G, Pineda R, Yun S H. Brillouin optical microscopy for corneal biomechanics[J]. Invest Ophthalmol & Visual Science, 2012,53(1):185-190.
[8] Qi Wenjuan, Li Rui, Ma Teng, et al. Confocal acoustic radiation force optical coherence Elastography elastography using a ring ultrasonic transducer[J]. Applied Physics Letters, 2014,104(12):123702.
[9] Tanter M, Touboul D, Gennisson J L, et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J]. IEEE Transactions on Medical Imaging, 2009,28(12):1881-1893.
[10] Zhang Xinyu, Yin Yin, Guo Yanrong, et al. Measurement of quantitative viscoelasticity of bovine corneas based on Lamb wave dispersion properties[J]. Ultrasound Medicine & Biology, 2015,41(5):1461-1472.
[11] Krauklis P V, Molotkov L A. Low-frequency Lamb waves in cylindrical and spherical layers in an elastic medium[J]. Journal of Mathematical Sciences, 1975,3(1):82-90.
[12] Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2005,52(11):1931-1942.
[13] Greenstein S A, Hersh P S. Corneal collagen cross-linking for keratoconus and corneal ectasia[M]. Berlin: Springer Berlin Heidelberg, 2014: 71-87.
[14] Tanter M, Touboul D, Gennisson J L, et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J]. IEEE Transactions on Medical Imaging, 2009,28(12):1881-1893.
[15] Urs R, Lloyd H O, Silverman R H. Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy[J]. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine, 2014,33(8):1417-1426.
[16] Scarcelli G, Kling S, Quijano E, et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus[J]. Investigative Ophthalmology & Visual Science, 2013,54(2):1418-1425.
[17] Avila M Y, Gerena V A, Navia J L. Corneal crosslinking with genipin, comparison with UV-riboflavin in ex-vivo model[J]. Molecular Vision, 2012,18:1068-1073.
[18] Kling S, Remon L, Pérez-Escudero A, et al. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments[J]. Investigative Ophthalmology & Visual Science, 2010,51(8):3961-3968.
[19] Elsheikh A, Wang D, Brown M, et al. Assessment of corneal biomechanical properties and their variation with age[J]. Current Eye Research, 2007,32(1):11-19.
【中文责编:英子;英文责编:子兰】

Memo

Memo:
-
Last Update: 2017-06-26