[1]乔振华,任亚飞.石墨烯中量子反常霍尔效应研究进展[J].深圳大学学报理工版,2014,31(No.6(551-660)):551-560.[doi:10.3724/SP.J.1249.2014.06551]
 Qiao Zhenhua and Ren Yafei.Recent progress on quantum anomalous Hall effect in graphene[J].Journal of Shenzhen University Science and Engineering,2014,31(No.6(551-660)):551-560.[doi:10.3724/SP.J.1249.2014.06551]
点击复制

石墨烯中量子反常霍尔效应研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年No.6(551-660)
页码:
551-560
栏目:
物理
出版日期:
2014-11-20

文章信息/Info

Title:
Recent progress on quantum anomalous Hall effect in graphene
文章编号:
201406001
作者:
乔振华1234任亚飞12
1)中国科学技术大学物理系,合肥 230026
2)中国科学技术大学合肥微尺度物质科学国家实验室,国际量子功能材料设计中心,合肥 230026
3)中国科学技术大学量子信息与量子科技前沿协同创新中心,合肥 230026
4)美国德克萨斯大学奥斯汀分校物理系,德克萨斯奥斯汀 78712,美国
Author(s):
Qiao Zhenhua1234 and Ren Yafei12
1) Department of Physics, University of Science and Technology of China, Hefei 230026, P.R.China
2) ICQD/HFNL, University of Science and Technology of China, Hefei 230026, P.R.China
3) Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P.R.China
4) Department of Physics, University of Texas at Austin, Autin 78712, Texas, USA
关键词:
凝聚态物理石墨烯量子反常霍尔效应Rashba自旋-轨道耦合交换场拓扑量子态
Keywords:
condensed matter physics graphene quantum anomalous Hall effect Rashba spin-orbit coupling exchange field topological quantum state
分类号:
O 469
DOI:
10.3724/SP.J.1249.2014.06551
文献标志码:
A
摘要:
量子反常霍尔效应是一种存在于二维电子气中,具有无带隙的手性边缘态但体态绝缘的物理现象.不同于强磁场下量子化朗道能级引起的量子霍尔效应,量子反常霍尔效应可通过引入自旋轨道耦合相互作用以及交换场来实现.作者回顾了量子反常霍尔效应的研究进展,评述了石墨烯中的量子反常霍尔效应.通过理论模型预言在石墨烯体系中引入交换场破坏时间反演对称性,通过考虑Rashba自旋-轨道耦合,可在狄拉克点打开一个拓扑非平庸的量子反常霍尔效应体能隙,进一步分析解释其物理根源.讨论了几种实验原型,尝试通过外部操控在石墨烯中实现量子反常霍尔效应.
Abstract:
Quantum anomalous Hall effect is a physical phenomenon of two-dimensional systems characterized by the insulating bulk states and chirally propagating gapless edge modes. Different from the quantum Hall effect caused by quantized Landau-level due to the strong magnetic field, the quantum anomalous Hall effect can be realized by the joint effect of spin-orbit coupling and local magnetization in the absence of Landau-level. In this paper, we, after briefly introducing the history and current status of the quantum anomalous Hall effect, mainly focus on the graphene which is a famous two-dimensional material possesses intriguing electronic and magnetic properties. We first give a simple theoretical model where the exchange field is present to break the time reversal symmetry and then the Rashba spin-orbit coupling opens an energy gap to realize quantum anomalous Hall effect in graphene. Then we further explain the microscopic mechanism. At last, we discuss several possible experimental prototypes aimed at realizing the quantum anomalous Hall effect in realistic.

参考文献/References:

[1] Hall E H.On a new action of the magnet on electric currents[J].American Journal of Mathematics, 1987, 2(3): 287-292.

[2] Ando T, Fowler A B,Stern F. Electronic properties of two-dimensional systems[J].Reviews of Modern Physics, 1982, 54(2): 437-672.
[3] Klitzing K V. The quantized hall effect[J].Physica B+C, 1984, 126(1/2/3): 242-249.?
[4] Zhang Yuanbo, Tan Yanwen, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene [J].Nature, 2005, 438: 201-204.
[5] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance in a two-dimensional periodic potential [J].Physical Review Letters, 1982, 49: 405-408.
[6] Haldane F M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015-2018.
[7] Onoda M, Nagaosa N. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals[J]. Physical Review Letters, 2003, 90(20): 206601-1-206601-4.
[8] Liu Chaoxing, Qi Xiaoliang, Dai Xi, et al.Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells[J]. Physical Review Letters, 2008, 101(14): 146802-1-146802-5.
[9] Yu Rui, Zhang Wei, Zhang Haijun, et al.Quantized anomalous Hall effect in magnetic topological insulators[J].Science,2010,329(5987):61-64.
[10] Qiao Zhenhua, Yang Shengyuan, Feng Wanxiang, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects[J]. Physical Review B, 2010, 82(16): 161414-1-161414-4.
[11] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(765): 197-200.
[12] Hasan M Z, Kane C L.Colloquium: topological insulators[J].Reviews of Modern Physics,2010,82(4):3045-3067.
[13] Nomura K, Nagaosa N.Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators[J].Physical Review Letters,2011,106(16):166802-1-166802-5.
[14] Zhang Hongbin, Lazo C, Blügel S, et al. Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms[J].Physical Review Letters, 2012, 108(5): 056802-1-056802-4.
[15] Ezawa M. Valley-polarized metals and quantum anomalous Hall effect in silicene[J].Physical Review Letters, 2012, 109(5): 055502-1-055502-5.
?[16] Garrity K F,David V. Chern insulators from heavy atoms on magnetic substrates [J].Physical Review Letters, 2012, 110(11): 116802-1-116802-5.
[17] Wang Z F, Liu Zheng, Liu Feng. Quantum anomalous Hall effect in 2D organic topological insulators[J].Physical Review Letters, 2013, 110(13):196801-1-196801-5.
[18] Kane C L, Mele E J.Quantum spin Hall effect in graphene[J].Physical Review Letters,2005,95(22):226801-1-226801-4.
[19] Murakami S, Nagaosa N, Zhang Shoucheng.Spin-Hall insulator[J].Physical Review Letters,2004,93(15):156804-1-156804-4.
[20] Knig M, Wiedmann S, Brüne C, et al.Quantum spin hall insulator state in HgTe quantum wells[J].Science,2007,318(5851):766-770.
[21] Hsieh D, Qian D, Wray L, et al.A topological Dirac insulator in a quantum spin Hall phase[J].Nature,2008,452(7190):970-974.
[22] Zhang Haijun, Liu Chaoxing, Qi Xiaoliang, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[23] Chang Cuizu, Zhang Jinsong, Feng Xiao, et al.Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J].Science,2013,340(6129):167-170.
[24] Castro Neto A H, Guinea F, Peres N M R, et al.The electronic properties of graphene[J].Reviews of Modern Physics,2009,81(1):109-162.[25] Das Sarma S, Adam S, Hwang E H, et al.Electronic transport in two-dimensional graphene[J].Reviews of Modern Physics,2011,83(2):1-69.
[26] Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene[J].Science,2007,315(5817):1379.
[27] McCann E,Koshino M.The electronic properties of bilayer graphene[J].Reports on Progress in Physics,2013,75(5):056503-1-056503-31.
[28] Qiao Zhenhua, Jiang Hua, Li Xiao, et al.Microscopic theory of quantum anomalous Hall effect in graphene[J].Physical Review B,2012,85(11):115439-1-115439-10.
[29] Zhang Fang, MacDonald A H, Mele E J, et al.Valley Chern numbers and boundary modes in gapped bilayer graphene[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(26):10546-10551.
[30] Ding Jun, Qiao Zhenhua, Feng Wanxiang, et al.Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: an abinitio study[J].Physical Review B,2011,84(19):195444-1-195444-9.
[31] Kane C L, Mele E J.Z2 topological order and the quantum spin Hall effect[J].Physical Review Letters, 2005, 95(14):146802-1-146802-4.
[32] Yao Yugui, Ye Fei, Qi Xiaoliang, et al.Spin-orbit gap of graphene: first-principles calculations[J].Physical Review B,2007,75(4):041401-1-041401-4.
[33] Dedkov Y S, Fonin M, Rüdiger U, et al. Rashba effect in the graphene/Ni(111) system[J] . Physical Review Letters,2008, 100(10): 107602-1-107602-4.?
[34] Tse W K, Qiao Zhenhua, Yao Yugui, et al.Quantum anomalous Hall effect in single-layer and bilayer graphene[J].Physical Review B, 2011, 83(15):155447-1-155447-8.
[35] Jiang Hua, Qiao Zhenhua, Liu Haiwen, et al.Stabilizing topological phases in graphene via random adsorption[J].Physical Review Letters, 2012, 109(11):116803-1-116803-5.
[36] Qiao Zhenhua, Ren Wei, Chen Hua, et al.Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator[J].Physical Review Letters, 2014, 112(11):116404-1-116404-5.
[37] Jiang Hua, Qiao Zhenhua, Liu Haiwen, et al.Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film[J].Physical Review B, 2012, 85(4):045445-1-045445-8.
[38] Qiao Zhenhua, Li Xiao, Tse W K, et al.Topological phases in gated bilayer graphene: effects of Rashba spin-orbit coupling and exchange field[J].Physical Review B, 2013, 87(12):125405-1-125405-15.
[39] Min H, Hill J E, Sinitsyn N A, et al.Intrinsic and Rashba spin-orbit interactions in graphene sheets[J].Physical Review B, 2006, 74(16):165310-1-165310-5.
[40] Marchenko D, Varykhalov A, Scholz M R, et al.Giant Rashba splitting in graphene due to hybridization with gold[J].Nature Communications,2012,3:1232-1-1232-16.
[41] Eelbo T, Was'niowska M, Thakur P, et al. Adatoms and clusters of 3d transition metals on graphene: electronic and magnetic configurations[J].Physical Review Letters, 2013, 110(13):136804-1-136804-8.
[42] Chen Hua, Niu Qian, Zhang Zhenyu, et al.Gate-tunable exchange coupling between cobalt clusters on graphene[J].Physical Review B, 2013, 87(14):144410-1-144410-17.

相似文献/References:

[1]范平,郑壮豪,梁广兴,等.离子束溅射制备Bi2Te3热电薄膜[J].深圳大学学报理工版,2011,28(No.1(001-095)):84.
 FAN Ping,ZHENG Zhuang-hao,LIANG Guang-xing,et al.Preparation of Bi2Te3 thermoelectric thin films by ion beam sputtering[J].Journal of Shenzhen University Science and Engineering,2011,28(No.6(551-660)):84.
[2]周锋,万欣,傅迎庆.氧化石墨还原法制备石墨烯及其吸附性能[J].深圳大学学报理工版,2011,28(No.5(377-470)):436.
 ZHOU Feng,WAN Xin,and FU Ying-qing.Synthesis and adsorption properties of graphene by reduction of graphite oxide[J].Journal of Shenzhen University Science and Engineering,2011,28(No.6(551-660)):436.
[3]刘剑洪,吴双泉,何传新,等.碳纳米管和碳微米管的结构、性质及其应用[J].深圳大学学报理工版,2013,30(No.1(001-110)):1.[doi:10.3724/SP.J.1249.2013.01001]
 Liu Jianhong,Wu Shuangquan,He Chuanxin,et al.Structure, property and application of carbon nanotubes and carbon microtubes[J].Journal of Shenzhen University Science and Engineering,2013,30(No.6(551-660)):1.[doi:10.3724/SP.J.1249.2013.01001]
[4]王斌,李健伟,卫亚东,等.石墨烯带正常-超导结的量子输运[J].深圳大学学报理工版,2014,31(No.2(111-220)):111.[doi:10.3724/SP.J.1249.2014.02111]
 Wang Bin,Li Jianwei,Wei Yadong,et al.Quantum transport through normal-superconducting graphene nanoribbons[J].Journal of Shenzhen University Science and Engineering,2014,31(No.6(551-660)):111.[doi:10.3724/SP.J.1249.2014.02111]
[5]林鹏,戴佳佳,王海瑞,等.基于电解质门控石墨烯晶体管的葡萄糖传感器(英文)[J].深圳大学学报理工版,2014,31(No.5(441-550)):452.[doi:10.3724/SP.J.1249.2014.05452]
 Lin Peng,Dai Jiajia,Wang Hairui,et al.Glucose sensors based on solution-gated graphene transistors[J].Journal of Shenzhen University Science and Engineering,2014,31(No.6(551-660)):452.[doi:10.3724/SP.J.1249.2014.05452]
[6]赵华,李华艳,周晓凡.自旋轨道耦合对超冷排斥费米气体相变的影响[J].深圳大学学报理工版,2014,31(No.6(551-660)):570.[doi:10.3724/SP.J.1249.2014.06570]
 Zhao Hua,Li Huayan,and Zhou Xiaofan.Effects of the spin-orbit coupling on the phase transition of ultra cold repulsive Fermi gases[J].Journal of Shenzhen University Science and Engineering,2014,31(No.6(551-660)):570.[doi:10.3724/SP.J.1249.2014.06570]
[7]罗景庭,钟鑫,朱茂东,等.ZnO薄膜生长及声表面波性能研究[J].深圳大学学报理工版,2015,32(No.1(001-110)):17.[doi:10.3724/SP.J.1249.2015.01017]
 Luo Jingting,Zhong Xin,Zhu Maodong,et al.Growth of ZnO thin film and its surface acoustic wave properties[J].Journal of Shenzhen University Science and Engineering,2015,32(No.6(551-660)):17.[doi:10.3724/SP.J.1249.2015.01017]
[8]张云波,王丽敏,王利.两全同粒子在一维光晶格中的量子行走[J].深圳大学学报理工版,2015,32(No.1(001-110)):1.[doi:10.3724/SP.J.1249.2015.01001]
 Zhang Yunbo,Wang Limin,and Wang Li.Quantum walks of two identical particles in one-dimensional lattices[J].Journal of Shenzhen University Science and Engineering,2015,32(No.6(551-660)):1.[doi:10.3724/SP.J.1249.2015.01001]
[9]牛青,李岩,李卫东.马赫-曾德尔干涉仪中位相测量系统的误差分析[J].深圳大学学报理工版,2015,32(No.3(221-330)):306.[doi:10.3724/SP.J.1249.2015.0327]
 Niu Qing,Li Yan,and Li Weidong.Systematic error analysis for phase measurement with the Mach-Zehnder interferometer[J].Journal of Shenzhen University Science and Engineering,2015,32(No.6(551-660)):306.[doi:10.3724/SP.J.1249.2015.0327]
[10]唐亚楠,申梓刚,陈卫光,等.改性石墨烯纳米材料气敏特性的理论研究[J].深圳大学学报理工版,2015,32(No.4(331-440)):365.[doi:10.3724/SP.J.1249.2015.04365]
 Tang Yanan,Shen Zigang,Chen Weiguang,et al.Theoretical study on gas sensitivity of modified graphene[J].Journal of Shenzhen University Science and Engineering,2015,32(No.6(551-660)):365.[doi:10.3724/SP.J.1249.2015.04365]

备注/Memo

备注/Memo:
Received:2014-08-11;Accepted:2014-09-09
Foundation:National Natural Science Foundation of China (11474265)
Corresponding author:Professor Qiao Zhenhua.E-mail: qiao@ustc.edu.cn
Citation:Qiao Zhenhua, Ren Yafei.Recent progress on quantum anomalous Hall effect in graphene[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(6): 551-560.(in Chinese)
基金项目:国家自然科学基金资助项目(11474265)
作者简介:乔振华(1983—),男(汉族),中国科学技术大学教授、博士生导师. E-mail: qiao@ustc.edu.cn
引文:乔振华,任亚飞. 石墨烯中量子反常霍尔效应研究进展[J]. 深圳大学学报理工版,2014,31(6):551-560.
更新日期/Last Update: 2014-10-29