[1]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(No.4(331-440)):393-399.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(No.4(331-440)):393-399.[doi:10.3724/SP.J.1249.2017.04393]
点击复制

基于紧密排列土柱模型的冻土热参数计算()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.4(331-440)
页码:
393-399
栏目:
土木建筑工程
出版日期:
2017-07-10

文章信息/Info

Title:
Calculation of thermal parameters of frozen soil based on the closely spaced soil column model
文章编号:
201704009
作者:
陈之祥12 李顺群12 夏锦红3 王凯12 桂超3
1)天津城建大学土木工程学院,天津 300384
2)天津市软土特性与工程环境重点实验室,天津 300384
3)新乡学院土木工程与建筑学院,河南新乡 453003
Author(s):
Chen Zhixiang12 Li Shunqun12 Xia Jinhong3 Wang Kai12 and Gui Chao3
1) School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, P.R.China
2) Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin 300384, P.R.China
3) School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, Henan Province, P.R.China
关键词:
岩土工程冻土热参数土柱模型温度场未冻水潜热
Keywords:
geotechnical engineering frozen soil thermal parameters soil column model temperature field unfrozen water latent heat
分类号:
TU 752
DOI:
10.3724/SP.J.1249.2017.04393
文献标志码:
A
摘要:
为评估热参数对饱和冻土瞬态温度场的影响,分析冻土温度场的影响因素,提出一种最紧密排列的土柱几何模型,土柱外部被自由水充满.假定冻结在土柱围合区域的中心产生并呈柱状发展,根据任意时刻单元体内部土、水和冰的体积构成,依据Johansen的预估土体导热系数计算方法,建立未冻水含量与导热系数之间的计算关系.依据比热加权计算的原理,结合土体的相对密度及水和冰的密度,获取了土柱模型在不同冻结时刻各相的质量比,确定了未冻水含量与比热之间的计算关系.依据不同冻结时刻土柱模型中的未冻水含量,建立潜热随冻结时刻的变化关系.根据实测粉质黏土的导热系数,结合土柱模型获取其比热、潜热随温度的变化关系.将获取的不同温度下的导热系数、比热和潜热值代入数值计算软件ABAQUS,获取了冻土温度场的计算值.将该计算值与实测值进行对比,表明基于该模型获取的计算热参数值能够较好地预测冻土温度场.
Abstract:
In order to evaluate the influence of thermal parameters on the calculation of transient temperature field of saturated frozen soil, the influencing factors of frozen soil temperature field are analyzed. A kind of soil column geometric model is put forward, and the outside of the soil column is filled with pore water. Assuming that the freezing occurs at the center of the enclosing area of the soil column and develops in column form, according to the calculation of the volume of soil, water and ice in the body at any time, and the calculation method of the soil thermal conductivity of Johansen, the relationship between the unfrozen water content and the thermal conductivity is established. According to the weighting calculation principle of specific heat and the relative density of soil and the density of water and ice, the mass ratio of soil column in different freezing time is obtained, then the relationship between unfrozen water content and specific heat is determined. According to the unfrozen water content of soil column model at different freezing time, the relationship between latent heat and freezing time is established. Based on the measured thermal conductivity and the soil column model, the relationship between specific heat and latent heat with negative temperature is obtained. The thermal conductivity, specific heat and latent heat of frozen soil under different negative temperature conditions obtained from the model are analyzed by numerical calculation software ABAQUS, and the calculated values of frozen soil temperature field are obtained. Comparing the calculated values with the measured results, it is shown that the thermal parameters obtained from the model can predict the temperature field of frozen soil.

参考文献/References:

[1] 原喜忠, 李宁, 赵秀云, 等. 非饱和(冻)土导热系数预估模型研究[J]. 岩土力学, 2010, 31(9): 2689-2694.
Yuan Xizhong, Li Ning, Zhao Xiuyun, et al. Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J]. Rock and Soil Mechanics, 2010, 31(9): 2689-2694.(in Chinese)
[2] 蔡海兵, 黄以春, 庞涛. 地铁联络通道三维冻结温度场有限元分析[J]. 铁道科学与工程学报, 2015, 12(6): 1436-1443.
Cai Haibing,Huang Yichun,Pang Tao. Finite element analysis on 3D freezing temperature field in metro connected aisle construction[J].Journal of Railway Science and Engineering, 2015, 12(6): 1436-1443.(in Chinese)
[3] 何敏, 李宁, 高焕焕,等. 带相变瞬态温度场问题的扩展有限元解析[J]. 冰川冻土, 2016, 38(4): 1044-1051.
He Min, Li Ning, Gao Huanhuan, et al. Extended finite element method analysis for the transient temperature field with phase change[J]. Journal of Glaciology and Geocrylogy, 2016, 38(4): 1044-1051.(in Chinese)
[4] 胡向东, 陈锦, 汪洋,等. 环形单圈管冻结稳态温度场解析解[J]. 岩土力学, 2013, 34(3): 874-880.
Hu Xiangdong, Chen Jin, Wang Yang, et al. Analytical solution to steady-state temperature field of single-circle-pipe freezing[J]. Rock and Soil Mechanics, 2013, 34(3): 874-880.(in Chinese)
[5] 陶兆祥, 张景森. 大含水(冰)量融冻土导热系数的测定研究[J]. 冰川冻土, 1983, 5(2): 75-80.
Tao Zhaoxiang, Zhang Jingsen. The thermal conductivity of thawed and frozen soils with high water (ice) content[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 75-80.(in Chinese)
[6] 刘焕宝, 张喜发, 赵意民, 等. 冻土导热系数热流计法模拟试验及成果分析[J]. 冰川冻土, 2011, 33(5): 1127-1131.
Liu Huanbao, Zhang Xifa, Zhao Yimin, et al. Frozen soil thermal conductivity determined by using heat-flow meter: simulation experiment and result analysis[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1127-1131.(in Chinese)
[7] 周家作, 韦昌富, 魏厚振,等. 线热源法测量冻土热参数的适用性分析[J]. 岩土工程学报, 2016, 38(4): 681-687.
Zhou Jiazuo, Wei Changfu, Wei Houzhen, et al. Applica- bility of line heat source method in measuring thermal parameters of frozen soil[J] Chinese Journal of Geote- chnical Engineering, 2016, 38(4): 681-687.(in Chinese)
[8] 陈琳, 喻文兵, 杨成松, 等. 基于微观结构的青藏高原风积沙导热系数变化机理研究[J]. 冰川冻土, 2014, 36(5): 1220-1226.
Chen Lin, Yu Wenbing, Yang Chengsong, et al. Conductivity of aeolian sand on the Tibetan Plateau based on microstructure[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1220-1226.(in Chinese)
[9] 张楠, 夏胜全, 侯新宇,等. 土热传导系数及模型的研究现状和展望[J]. 岩土力学, 2016, 37(6): 1550-1562.
Zhang Nan, Xia Shengquan, Hou Xinyu, et al. Review on soil thermal conductivity and prediction model[J]. Rock and Soil Mechanics, 2016, 37(6): 1550-1562.(in Chinese)
[10] 赵刚, 陶夏新, 刘兵. 原状土冻融过程中水分迁移试验研究[J]. 岩土工程学报, 2009, 31(12): 1952-1957.
Zhao Gang, Tao Xiaxin, Liu Bing. Experimental study on water migration in undisturbed soil during freezing and thawing process[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1952-1957.(in Chinese)
[11] 王铁行, 刘自成, 卢靖. 黄土导热系数和比热容的实验研究[J]. 岩土力学, 2007, 28(4): 655-658.
Wang Tiehang, Liu Zicheng, Lu Jing. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 2007, 28(4): 655-658.(in Chinese)
[12] 冷毅飞, 张喜发, 杨凤学,等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764.
Leng Yifei, Zhang Xifa, Yang Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764.(in Chinese)
[13] 孙斌祥, 徐斅祖, 赖远明, 等. 块石的热扩散系数和导热系数确定方法[J]. 冰川冻土, 2002, 24(6): 790-795.
Sun Binxiang, Xu Xiaozu, Lai Yuanming, et al. Determination of Thermal Diffusivity and Conductivity on Ballast[J]. Journal of Glaciology and Geocryology, 2002, 24(6): 790 -795.(in Chinese)
[14] 肖衡林, 吴雪洁, 周锦华. 岩土材料导热系数计算研究[J]. 路基工程, 2007(3): 54-56.
Xiao Henglin, Wu Xuejie, Zhou Jinhua. Study on calculation of thermal conductivity of geotechnical materials[J]. Subgrade Engineering, 2007(3): 54-56.(in Chinese)
[15] 马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640.
Ma Wei, Wang Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640.(in Chinese)
[16] Johansen B A, Branko L. Frozen ground engineering[M]. New Jersey, USA: John Wiley & Son, 2004.
[17] 王彦洋. 冻土的热参数与土冻结过程的热力耦合分析[D]. 天津: 天津城建大学, 2015.
Wang Yanyang. The analysis of thermal parameters for frozen soil and coupled thermal-stress for the process of soil freezing[D]. Tianjin: Tianjin Chengjian University, 2016.(in Chinese)
[18] 刘月, 王正中, 王羿, 等. 考虑水分迁移及相变对温度场影响的渠道冻胀模型[J]. 农业工程学报, 2016, 32(17): 83-88.
Liu Yue, Wang Zhengzhong, Wang Yi, et al. Frost heave model of canal considering influence of moisture migration and phase transformation on temperature field[J]. Journal of the Chinese Society of Agricultural Engineering, 2016, 32(17): 83-88.(in Chinese)
[19] 于珊, 李顺群, 冯慧强. 土的导热系数与其干密度、饱和度和温度的关系[J]. 天津城建大学学报, 2015(3): 172-176.
Yu Shan, Li Shunqun, Feng Huiqiang. Relationship among soil’s thermal conductivity, dry density, saturation and temperature[J]. Journal of Tianjin Chengjian University, 2015(3): 172-176.(in Chinese)

[20] 王丽霞, 胡庆立, 凌贤长, 等. 青藏铁路冻土未冻水含量与热参数试验[J]. 哈尔滨工业大学学报, 2007, 39(10): 1660-1663.
Wang Lixia, Hu Qingli, Ling Xianchang, et al. Test study on unfrozen water content and thermal parameters of qinghai-tibet railway frozen silty clay[J]. Journal of Harbin Institute of Technology, 2007, 39(10): 1660-1663.(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(331-440)):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(No.4(331-440)):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(No.4(331-440)):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(No.4(331-440)):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(No.4(331-440)):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(No.4(331-440)):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(No.4(331-440)):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(No.5(441-550)):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(No.4(331-440)):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(No.2(111-220)):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(No.4(331-440)):147.
[9]李晓峰,肖成志,等.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(No.5(441-550)):501.
 Li Xiaofeng,Xiao Chengzhi,and Zhang Jingjuan,et al.The performance of sandy silt affectedby compaction degrees and water content[J].Journal of Shenzhen University Science and Engineering,2017,34(No.4(331-440)):501.

备注/Memo

备注/Memo:
Received:2017-01-11;Accepted:2017-02-23
Foundation:National Natural Science Foundation of China (41472253); Key Project of Natural Science Foundation of Tianjin City (6JCZDJC39000); Tianjin Construction System Science and Technology Project Development Plan (2016-25)
Corresponding author:Professor Li Shunqun. E-mail: lishunqun@yeah.net
Citation:Chen Zhixiang, Li Shunqun, Xia Jinhong,et al. Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(4): 393-399.(in Chinese)
基金项目:国家自然科学基金资助项目(41472253);天津市自然科学基金重点资助项目(16JCZDJC39000);天津市建设系统科学技术资助项目(2016-25)
作者简介:陈之祥(1990—),男,天津城建大学硕士研究生. 研究方向:土的本构关系. E-mail:chen_zhixiang@126.com
引文:陈之祥, 李顺群, 夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J]. 深圳大学学报理工版,2017,34(4):393-399.
更新日期/Last Update: 2017-06-26