[1]罗娜,李璟,周成礼,等.超声图像中胎儿股骨的自动测量[J].深圳大学学报理工版,2017,34(No.4(331-440)):421-427.[doi:10.3724/SP.J.1249.2017.04421]
 Luo Na,Li Jing,Zhou Chengli,et al.Automatic measurement of fetal femur length in ultrasound image[J].Journal of Shenzhen University Science and Engineering,2017,34(No.4(331-440)):421-427.[doi:10.3724/SP.J.1249.2017.04421]
点击复制

超声图像中胎儿股骨的自动测量()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.4(331-440)
页码:
421-427
栏目:
电子与信息科学
出版日期:
2017-07-10

文章信息/Info

Title:
Automatic measurement of fetal femur length in ultrasound image
文章编号:
201704013
作者:
罗娜1李璟1周成礼2郑介志1倪东1
1) 医学超声关键技术国家地方联合工程实验室,广东省生物医学信息监测与超声成像重点实验室,深圳大学生物医学工程学院,广东深圳 518060
2) 深圳市妇幼保健院超声科,广东深圳 518000
Author(s):
Luo Na1 Li Jing1 Zhou Chengli2 Zheng Jiezhi1 and Ni Dong1
1) National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong Province, P.R.China
关键词:
生物医学工程学超声图像图像处理股骨长测量Frangi滤波器产前诊断
Keywords:
biomedical engineering ultrasound images image processing femur length measurement Frangi filter prenatal diagnosis
分类号:
R 318; TP 751
DOI:
10.3724/SP.J.1249.2017.04421
文献标志码:
A
摘要:
提出一种全自动测量胎儿股骨长的方法,利用Frangi滤波器结合灰度信息分割出超声图像中股骨的候选区域,根据候选区域位置、形状信息定位出股骨区域,利用股骨区域的边缘和拟合出的骨架化曲线定位到股骨的端点,并计算得到股骨长.与医生手动测量结果对比,70幅股骨图像的平均测量误差为1.18 mm,表明该方法可准确测量股骨长.
Abstract:
We propose a novel automatic method to measure the fetal femur length. First, the candidate regions containing the femur are detected in the ultrasound image using Frangi filter and gray information. Then, the femur region is localized based on both the shape and position of the candidate regions. Finally, the femur end points are determined by detecting the edges of the femur region and fitting the femur skeleton. The femur length is measured. Comparing with the results measured by doctors, the average measurement error of 70 ultrasound femur images is 1.18 mm, which indicates that our method can accurately measure the femur length.

参考文献/References:

[1] 倪东,陈思平,汪天富.基于曲光线跟踪算法的超声成像实时模拟研究[J].深圳大学学报理工版,2012,29(4):322-327.
Ni Dong, Chen Siping, Wang Tianfu. A beam width aware curvilinear ray tracing method for real-time ultrasound simulation[J]. Journal of Shenzhen University Science and Engineering, 2012, 29(4): 322- 327.(in Chinese)
[2] 万仪芳,沈国芳,朱家安.超声测量评估胎儿主要生长参数的研究[J].上海医学,2010,33(12):1132-1134.
Wan Yifang, Shen Guofang, Zhu Jiaan. Ultrasonography determination in evaluation of major growth parameters of fetuses[J]. Shanghai Medical Journal, 2010, 33(12): 1132-1134.(in Chinese)
[3] 詹林,文桂琼,林毅,等.产前超声筛查诊断胎儿肢体畸形的价值[J].中国医学影像学杂志,2010,18(3):213-216.
Zhan Lin, Wen Guiqiong, Lin Yi. et al. The effectiveness of ultrasound screening in the prenatal diagnosis of fetal malformation[J]. Chinese Journal of Medical Imaging, 2010, 18(3): 213-216.(in Chinese)
[4] 李威,贾淑文,吕祥.产前超声检查对胎儿畸形的诊断价值[J].中国妇幼保健,2013,28(8):1290-1292.
Li Wei, Jia Shuwen, Lv Xiang. The effectiveness of ultrasound screening in the prenatal diagnosis of fetal malformation[J]. Maternal and Child Health Care of China, 2013, 28(8): 1290-1292.(in Chinese)
[5] 李璟,倪东,李胜利,等.超声图像中胎儿头围的自动测量[J].深圳大学学报理工版,2014,31(5):455-463.
Li Jing, Ni Dong, Li Shengli, et al. The automatic ultrasound measurement of fetal head circumference[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(5): 455-463.(in Chinese)
[6] Maurits V T, Antti M, Bart K. Repetitive strain injury[J]. Lancet, 2007, 369(9575): 1815-1822.
[7] Zhang Lei, Ye Xujiong, Lambrou T, et al. A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2D ultrasound images[J]. Physics in Medicine and Biology, 2016, 61(3): 1095-1115.
[8] Wang C W. Automatic entropy-based femur segmentation and fast length measurement for fetal ultrasound images[C]// International Conference on Advanced Robotics and Intelligent Systems.[S.l.]: IEEE, 2014: 1-5.
[9] 余锦华,汪源源,陈萍,等.胎儿超声图像分割及自动径线测量[J].中国生物医学工程学报,2007,26(6):867-873.
Yu Jinhua, Wang Yuanyuan, Chen Ping, et al. Fetal ultrasound image segmentation and automatic diameter and length measurement[J]. Chinese Journal of Biomedical Engineering, 2007, 26(6): 867-873.(in Chinese)
[10] Salomon L J, Alfirevic Z, Berghella V, et al. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan[J]. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 2011, 37(1): 116-126.
[11] Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer Berlin Heidelberg, 2000: 130-137.
[12] Jimenez-Carretero D, Santos A, Kerkstra S, et al. 3D Frangi-based lung vessel enhancement filter penalizing airways[C]// IEEE the 10th International Symposium on Biomedical Imaging.[S. l.]: IEEE, 2013: 926-929.
[13] Shashank, Bhattacharya M, Sharma G K. Optimized coronary artery segmentation using Frangi filter and Anisotropic diffusion filtering[C]// International Symposium on Computational and Business Intelligence. New Delhi, India: IEEE, 2013: 261-264.
[14] 吕哲,王福利,常玉清,等.改进的形态学骨架提取算法[J].计算机工程,2009,35(19):23-25.
Lv Zhe, Wang Fuli, Chang Yuqing, et al. Improved morphological skeleton extraction algorithm[J]. Computer Engineering, 2009, 35(19): 23-25.(in Chinese)
[15] Liu Hongzhi, Wu Zhonghai, Zhang Xing, et al. A skeleton pruning algorithm based on information fusion[J]. Pattern Recognition Letters, 2013, 34(10): 1138-1145.
[16] Udupa J K, Leblanc V R, Ying Zhuge, et al. A framework for evaluating image segmentation algorithms[J]. Computerized Medical Imaging and Graphics, 2006, 30(2): 75-87.
[17] Heimann T, Van Ginneken B, Styner M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE Transactions on Medical Imaging, 2009, 28(8):1251-1265.
[18] Myles P S, Cui J. Using the Bland-Altman method to measure agreement with repeated measure[J]. British Journal of Anaesthesia, 2007, 99(3): 309-311.
[19] Rueda S, Fathima S, Knight C L, et al. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge[J]. IEEE Transactions on Medical Imaging,?2014, 33(4): 797-813.
[20] Székely G J, Rizzo M L. The distance correlation t-test of independence in high dimension[J]. Journal of Multivariate Analysis, 2013, 117(3): 193-213.

相似文献/References:

[1]唐盛,陈思平,尹立东,等.一种快速全自动超声子宫节育环图像识别算法[J].深圳大学学报理工版,2008,25(3):276.
 TANG Sheng,CHEN Si-ping,YIN Li-dong,et al.A fast automatic image ultrasound recognition algorithm of the intra-uterine device[J].Journal of Shenzhen University Science and Engineering,2008,25(No.4(331-440)):276.

备注/Memo

备注/Memo:
Received:2017-02-14;Accepted:2017-03-11
Foundation:National Natural Science Foundation of China (6157010571)
Corresponding author:Associate professor Ni Dong.E-mail: nidong@szu.edu.cn
Citation:Luo Na, Li Jing, Zhou Chengli, et al. Automatic measurement of fetal femur length in ultrasound image[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(4): 421-427.(in Chinese)
基金项目:国家自然科学基金资助项目(6157010571)
作者简介:罗娜(1992—),女,深圳大学硕士研究生.研究方向:医学图像处理.E-mail: 412393206@qq.com
引文:罗娜,李璟,周成礼,等.超声图像中胎儿股骨的自动测量[J]. 深圳大学学报理工版,2017,34(4):421-427.
更新日期/Last Update: 2017-06-26