[1]李承娜,高阳,刘子明,等.大豆PM1蛋白抗氧化作用及提高酵母对铜耐受力[J].深圳大学学报理工版,2017,34(No.5(441-550)):457-463.[doi:10.3724/SP.J.1249.2017.05457]
 Li Chengna,Gao Yang,Liu Ziming,et al.Characteristics of antioxidant activity of soybean PM1 protein and enhancement of tolerance of recombinant yeast to copper stress[J].Journal of Shenzhen University Science and Engineering,2017,34(No.5(441-550)):457-463.[doi:10.3724/SP.J.1249.2017.05457]
点击复制

大豆PM1蛋白抗氧化作用及提高酵母对铜耐受力()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.5(441-550)
页码:
457-463
栏目:
生物工程
出版日期:
2017-09-20

文章信息/Info

Title:
Characteristics of antioxidant activity of soybean PM1 protein and enhancement of tolerance of recombinant yeast to copper stress
文章编号:
201705003
作者:
李承娜高阳刘子明刘国宝郑易之
深圳大学生命与海洋科学学院,深圳市微生物基因工程重点实验室,广东深圳518060
Author(s):
Li Chengna Gao Yang Liu Ziming Liu Guobao and Zheng Yizhi
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
大豆GmPM1蛋白组氨酸Cu2+胁迫清除羟基自由基酵母重组子
Keywords:
soybean GmPM1 protein histidine Cu2+ stress scavenging hydroxyl radicals recombinant yeast
分类号:
Q 943.2;Q 71
DOI:
10.3724/SP.J.1249.2017.05457
文献标志码:
A
摘要:
Cu2+是植物生长必需的微量元素之一,但土壤中过量的Cu2+会对植物细胞产生毒害作用.大豆GmPM1蛋白属于第4组的胚胎晚期富集(late embroygenesis abundant, LEA)蛋白,该组蛋白序列中富含组氨酸残基. 研究大豆GmPM1蛋白在提高植物耐Cu2+胁迫方面的保护作用及其机理. 对大豆幼苗进行150 μmol/L CuSO4胁迫实验. 结果表明,Cu2+胁迫会造成大豆幼苗叶片失水萎蔫;在胁迫3 h和24 h时,幼叶内GmPM1基因表达上调. 构建了酵母表达载体pYES2-GmPM1,转化Cu2+敏感型酵母(ΔYAP1)得到重组菌ΔYAP1-GmPM1. 检测结果表明,表达GmPM1蛋白的酵母重组子对Cu2+胁迫耐受力得到提高. 采用Cu抗坏血酸体系,在体外检测出GmPM1及富含组氨酸残基的GmPM1-C端蛋白具有清除羟基自由基能力. 研究表明,大豆GmPM1蛋白可通过其C端的组氨酸残基结合过多的Cu2+,清除由Cu2+胁迫造成的细胞内产生的过量羟基自由基,提高植物及其细胞对Cu2+胁迫的耐受性.
Abstract:
Cu2+ is an essential micronutrient for plant growth, but it is toxic when plant growth under excess copper stress. Soybean GmPM1 protein belongs to late embryogenesis abundant (LEA) group 4 (LEA4) proteins, which has a high proportion of histidine residues in the protein sequence. Firstly, we investigate the protective function and mechanisms of GmPM1 protein in plant under Cu2+ stress. The leaves of soybean seedling are withered under 150 μmol/L CuSO4 stress, and at the meantime the expression of GmPM1 gene in the young leaves was up-regulated in 3 h and 24 h of the stress. Secondly, the yeast expression plasmid of pYES2-GmPM1 is constructed and then transformed into the copper-sensitive yeast mutant ΔYAP1 to create recombinants of ΔYAP1-GmPM1. The recombinant yeast expressing GmPM1 protein could enhance the tolerance to Cu2+ stress. Then, the activities of scavenging hydroxyl radicals of GmPM1 and GmPM1-C protein in vitro are determined by using Cu-ascorbic acid system, which is rich in histidine residual in their sequence. The results show that GmPM1 could chelate Cu2+ through histidine residual in the C-terminal of GmPM1 protein and exert the activity of scavenge hydroxyl radicals, thus could improve the tolerance of plants to Cu2+ stress.

参考文献/References:

[1] 刘昀,刘国宝,李冉辉,等.胚胎晚期富集蛋白与生物的干旱胁迫耐受性[J]. 生物工程学报,2010, 26(5): 569-575.
Liu Yun, Liu Guobao, Li Ranhui, et al. Functions of late embryogenesis abundant proteins in desiccation-tolerance of organisms: a review[J]. Chinese Journal of Biotechnology, 2010, 26(5): 569-575.(in Chinese)
[2] Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit[J]. The Journal of Biological Chemistry, 2000, 275(8): 5668-5674.
[3] Su Mengying, Huang Gan, Zhang Qing, et al. The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana[J]. Plant Science, 2016, 247: 93-103.
[4] Roberts J K, Desimone N a, Lingle W L, et al. Cellular concentrations and uniformity of cell-type accumulation of two lea proteins in cotton embryos[J]. The Plant Cell, 1993, 5(7): 769-780.
[5] Olvera-Carrillo Y,Campos F,Reyes J L,et al.Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis[J]. Plant Physiology, 2010, 154(1): 373-390.
[6] Cuevas-Velazquez C L, Saab-Rincón G, Reyes J L, et al. The unstructured n-terminal region of Arabidopsis group 4 late embryogenesis abundant (LEA) proteins is required for folding and for chaperone-like activity under water deficit[J]. The Journal of Biological Chemistry, 2016, 291(20): 10893-10903.
[7] Shih M D, Hsieh T Y, Lin T P, et al. Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and Fourier transform infrared spectrometry[J]. Plant and Cell Physiology, 2010, 51(3): 395-407.
[8] Liu Guobao, Liu Ke, Gao Yang, et al. Involvement of C-Terminal histidines in soybean PM1 protein oligomerization and Cu2+ binding[J]. Plant and Cell Physiology, 2017, 58(6): 1018-1029.
[9] Wang Hui, Hu Tangjin, Huang Jianzi, et al. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance[J]. International Journal of Molecular Sciences, 2013, 14(5): 8775-8786.
[10] Hara M, Kondo M, Kato T. A KS-type dehydrin and its related domains reduce Cu-promoted radical Generation and the histidine residues contribute to the radical-reducing activities[J]. Journal of Experimental Botany, 2013, 64(6): 1615-1624.
[11] Park S H, Shalongo W, Stellwagen E. The role of PII conformations in the calculation of peptide fractional helix content[J]. Protein Science, 1997, 6(8): 1694-1700.
[12] Soulages J L, Kim K, Arrese E L, et al. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly(L-proline)-type II structure[J]. Plant Physiology, 2003, 131(3): 963-975.
[13] González-Mendoza D, Espadas Y Gil F, Escoboza-Garcia F, et al. Copper stress on photosynthesis of black mangle (Avicennia germinans)[J]. Anais da Academia Brasileira de Ciencias, 2013, 85(2): 665-670.
[14] Chamseddine M, Wided B A, Guy H, et al. Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves[J]. Plant Growth Regulation, 2008, 57(1): 89-99.
[15] 金枫,王翠,林海建,等.植物重金属转运蛋白研究进展[J]. 应用生态学报, 2010, 21(7): 1875-1882.
Jin Feng, Wang Cui, Lin Haijian, et al. Heavy metal-transport proteins in plants: a review[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1875-1882.(in Chinese)
[16] Mu Peiqiang, Feng Dongru, Su Jianbin, et al. Cu2+ triggers reversible aggregation of a disordered His-rich dehydrin MpDhn12 from Musa paradisiacal[J]. Journal of Biochemistry, 2011, 150(5): 491-499.
[17] Finkelstein R. Abscisic acid synthesis and response[J]. The Arabidopsis Book, 2013, 11(11): e0058.
[18] Mowla S B, Cuypers A, Driscoll S P, et al. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant(LEA)-like protein in oxidative stress tolerance[J]. Plant Journal, 2006, 48(5): 743-756.
[19] Tiffany M L, Krimm S. New chain conformations of poly(glutamic acid) and polylysine[J]. Biopolymers, 1968, 6(9): 1379-1382.
[20] Rath A, Davidson A R, Deber C M. The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition[J]. Biopolymers, 2005, 80(2-3): 179-185.
[21] Zou Yongdong, Hong Ruisha, He Shuwen, et al. Polyproline II structure is critical for the enzyme protective function of soybean Em (LEA1) conserved domains[J]. Biotechnology Letters, 2011, 33(8): 1667-1673.
[22] Rahman L N, Smith G S, Bamm V V, et al. Phosphorylation of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 facilitates cation-induced conformational changes and actin assembly[J]. Biochemistry, 2011, 50(44): 9587-9604.

相似文献/References:

[1]刘 昀,李冉辉,郑易之,等.大豆PM2蛋白及其结构域可提高烟草耐盐性[J].深圳大学学报理工版,2007,24(1):95.
 LIU Yun,LI Ran-hui,ZHENG Yi-zhi,et al.Soybean PM2 protein and its 22-mer region enhance salt tolerance of tobacco plants[J].Journal of Shenzhen University Science and Engineering,2007,24(No.5(441-550)):95.
[2]叶展辉,郑易之,刘 昀.大豆PM2蛋白11氨基酸结构域的耐盐功能鉴定[J].深圳大学学报理工版,2006,23(4):362.
 YE Zhan-hui,ZHENG Yi-zhi,and LIU Yun.11-mer repeating region in soybean PM2 protein enhances salt tolerance of Escherichia coli[J].Journal of Shenzhen University Science and Engineering,2006,23(No.5(441-550)):362.
[3]蔡丹,郑易之,兰英.大豆LEA蛋白Em的表达可提高大肠杆菌和烟草耐盐性[J].深圳大学学报理工版,2006,23(3):230.
 CAI Dan,ZHENG Yi-zhi,and LAN Ying.Expression of Em gene(LEA1) from soybean immature seeds confers salt tolerance to Escherichia coli and tobacco plants[J].Journal of Shenzhen University Science and Engineering,2006,23(No.5(441-550)):230.
[4]余玉雯,孙海丹,郑易之,等.大豆耐盐相关基因的分离及其功能鉴定[J].深圳大学学报理工版,2004,21(4):324.
 YU Yu-wen,SUN Hai-dan,ZHENG Yi-zhi,et al.Isolation and characterization of genes related to salt-tolerance in soybean[J].Journal of Shenzhen University Science and Engineering,2004,21(No.5(441-550)):324.

备注/Memo

备注/Memo:
Received:2017-05-24;Accepted:2017-06-05
Foundation:National Natural Science Foundation of China(31370289)
Corresponding author:Professor Zheng Yizhi. E-mail:yzzheng@szu.edu.cn
Citation:Li Chengna, Gao Yang, Liu Ziming, et al. Characteristics of antioxidant activity of soybean PM1 protein and enhancement of tolerance of recombinant yeast to copper stress[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(5): 457-463.(in Chinese)
基金项目:国家自然科学基金资助项目(31370289)
作者简介:李承娜(1991—),女,深圳大学硕士研究生. 研究方向:植物抗逆分子生物学.E-mail: 1324471270@qq.com
引文:李承娜,高阳,刘子明,大豆PM1蛋白抗氧化作用及提高酵母对铜耐受力[J]. 深圳大学学报理工版,2017,34(5):457-463.
更新日期/Last Update: 2017-09-11