[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459-463.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(4):459-463.
点击复制

考虑横竖向渗流的砂井地基非线性固结分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第27卷
期数:
2010年4期
页码:
459-463
栏目:
土木建筑工程
出版日期:
2010-10-31

文章信息/Info

Title:
Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage
文章编号:
1000-2618(2010)04-0459-05
作者:
郭彪12韩颖3龚晓南2卢萌盟4
1)中煤国际工程集团重庆设计研究院,重庆 400016
2)浙江大学软弱土与环境土工教育部重点实验室,杭州 310058
3)机械工业部第三设计研究院,重庆 400039
4)中国矿业大学深部岩土力学与地下工程国家重点实验室,徐州 221008
Author(s):
GUO Biao12HAN Ying3GONG Xiao-nan2and LU Meng-meng4
1)Sino-Coal International Engineering Group Chongqing Design & Research Institute, Chongqing 400016, P.R.China
2)MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, P.R.China
3)China CTDI Engineering Corporation, Chongqing 400039, P.R.China
4)State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221008, P.R.China
关键词:
岩土工程砂井地基非线性固结压缩指数渗透指数组合渗流
Keywords:
geotechnical engineeringsand drain foundationnon-linear consolidationcompressive indexpermeability indexcoupled seepage
分类号:
TU 43
文献标志码:
A
摘要:
对砂井地基内出现横竖向组合渗流的非线性固结问题进行研究.考虑涂抹区土体水平渗透系数呈线性变化、抛物线变化和水平渗透系数不变3种模式,推导砂井地基固结问题的解析解,分析砂井地基的非线性固结性状.结果表明,考虑横竖向组合渗流比仅考虑径向渗流时固结快,井径比越大,两者差距越小;砂井地基非线性固结按孔压定义的固结度小于按变形定义的固结度;在本文研究的3种模式中,涂抹区水平渗透系数呈抛物线变化时地基固结最快,呈线性变化时次之,不变时固结最慢;压缩指数小于渗透指数时,考虑非线性比不考虑非线性的固结速度快,压缩指数大于渗透指数时,考虑非线性比不考虑非线性的固结速度慢;上部荷载越大,固结越快.
Abstract:
The nonlinear consolidation of sand foundation with both horizontal and vertical drainage was analyzed.Three types of variation patterns of the horizontal permeability of soil in the smear zone,including the constant distribution pattern,the linear distribution pattern and the parabolic distribution pattern were considered.Based on the characteristics mentioned above,analytical solution was obtained for this type of consolidation problem.Moreover,the nonlinear consolidation behavior of sand drain foundation was investigated.The results show that the consolidation rate of the foundation with both radial and vertical drainage is faster than the one with only radial drainage.The larger the value of radius ratio is,the smaller their difference is.The overall average degree of consolidation of foundation in terms of pore pressure is unequal to that in terms of strain,the former being always smaller than the later.The consolidation rate is at its maximum for the parabolic distribution pattern,and is at its minimum for the constant distribution pattern whereas the one for the linear distribution pattern is in the mean.When the soil’s compressive index is less than the permeability index,the consolidate rate predicted by the present solution is higher than that determined by using the linear consolidate theory.When the soil’s compressive index is greater than the permeability index,the present solution always gives a lower consolidation rate than the linear consolidate theory does.The larger the loading is,the faster the consolidation rate is.

参考文献/References:

[1]谢康和,周开茂.未打穿竖向排水井地基固结理论[J].岩土工程学报,2006,28(6):679-684.
[2]卢萌盟,谢康和,张玉国,等.考虑土体水平渗透系数变化的复合地基固结解[J].浙江大学学报工学版,2008,41(11):1996-2001.
[3]Tang X W,Onitsuka K.双层竖井地基的固结[J].岩土力学中的数值和解析方法,2001,25:449-465.(英文版)
[4]张璐璐,邓汉忠,张利民.考虑渗流参数相关性的边坡可靠度研究[J].深圳大学学报理工版,2010,27(1):114-119.
[5]Bergado D T,Asakami H,Alfaro M C,等.曼谷黏土竖井地基涂抹效应[J].岩土工程期刊,1991,117(10),1509-1530.(英文版)
[6]Indraratna B,Redana I W.竖井地基涂抹区域试验研究[J].岩土和环境工程期刊,1998,124(2):180-184.(英文版)
[7]Sharma J S,Xiao D.竖井地基涂抹区特性的大尺寸室内试验研究[J].加拿大土工杂志,2000,37(6):1265-1271.(英文版)
[8]XIE K H,LU M M,LIU G M.碎石桩复合地基等应变固结[J].岩土力学中的数值和解析方法,2009,33:1721-1735.(英文版)
[9]Lekha K R,Krishnaswamy N R,Basak P.随时间变化荷载下砂井地基固结[J].岩土力学中的数值和解析方法,1998,124(1):91-94.(英文版)
[10]Indraratna B,Rujikiatkamjorn C,Sathananthan I.竖井地基非线性径向固结[J].加拿大土工杂志,2005,42:1330-1341.(英文版)



[1]XIE Kang-he,ZHOU Kai-mao.Consolidation theory for soft soil with partially penetrated vertical drains[J].Chinese Journal of Geotechnical Engineering,2006,28(6):679-684.(in Chinese)
[2]LU Meng-meng,XIE Kang-he,ZHANG Yu-guo,et al.Analytical solution for consolidation of composite foundation accounting for variation of soil horizontal permeability coefficient[J].Journal of Zhejiang University Engineering Science,2008,41(11):1996-2001.(in Chinese)
[3]Tang X W,Onitsuka K.Consolidation of double- layered ground with vertical drains[J].International Journal for Numerical and Analytical Methods in Geomechanics,2001,25:449-465.
[4]ZHANG Lu-lu,DENG Han-zhong,ZHANG Li-min.Reliability analysis of slope stability considering correlations among soil hydraulic parameters[J].Journal of Shenzhen University Science and Engineering,2010,27(1):114-119.(in Chinese)
[5]Bergado D T,Asakami H,Alfaro M C,et al.Smear effects of vertical drains on soft Bangkok clay[J].Journal of Geotechnical Engineering,1991,117(10):1509-1530.
[6]Indraratna B,Redana I W.Laboratory determination of smear zone due to vertical drain installation[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(2):180-184.
[7]Sharma J S,Xiao D.Characterization of a smear zone around vertical drains by large-sacle laboratory tests[J].Canadian Geotechnical Journal,2000,37(6):1265-1271.
[8]XIE K H,LU M M,LIU G B.Equal strain consolidation for stone columns reinforced foundation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2009,33:1721-1735.
[9]Lekha K R,Krishnaswamy N R,Basak P.Consolidation of clay by sand drain under time-dependent loading[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(1):91-94.
[10]Indraratna B,Rujikiatkamjorn C,Sathananthan I.Radial consolidation of clay using compressibility indices and varying horizontal permeability[J].Canadian Geotechnical Journal,2005,42:1330-1341.

相似文献/References:

[1]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(4):389.
[2]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(4):31.[doi:10.3724/SP.J.1249.2012.01031]
[3]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(4):78.[doi:10.3724/SP.J.1249.2013.01078]
[4]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(4):190.[doi:10.3724/SP.J.1249.2013.02190]
[5]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(No.4(331-440)):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
[6]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(No.5(441-550)):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(4):484.[doi:10.3724/SP.J.1249.2016.05484]
[7]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(No.2(111-220)):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(4):147.
[8]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(No.4(331-440)):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
[9]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(No.5(441-550)):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(4):501.[doi:10.3724/SP.J.1249.2017.05501]
[10]陈峰.早龄期玄武岩纤维水泥土的强度及变形特性[J].深圳大学学报理工版,2017,34(No.6(551-660)):611.
 Chen Feng.Strength and deformation characteristics of basalt fiber cement-soil[J].Journal of Shenzhen University Science and Engineering,2017,34(4):611.

备注/Memo

备注/Memo:
收稿日期:2010-01-08;修回日期:2010-09-17
基金项目:国家自然科学基金资助项目(50879076)
作者简介:郭彪(1982-),男(汉族),四川省安岳县人,浙江大学博士研究生.E-mail:gb25891775@163.com
通讯作者:龚晓南(1944-),男(汉族),浙江大学教授、博士生导师.E-mail:xngong@hzcnc.com
更新日期/Last Update: 2010-11-09