[1]唐盛,陈思平,尹立东,等.一种快速全自动超声子宫节育环图像识别算法[J].深圳大学学报理工版,2008,25(3):276-281.
 TANG Sheng,CHEN Si-ping,YIN Li-dong,et al.A fast automatic image ultrasound recognition algorithm of the intra-uterine device[J].Journal of Shenzhen University Science and Engineering,2008,25(3):276-281.
点击复制

一种快速全自动超声子宫节育环图像识别算法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第25卷
期数:
2008年3期
页码:
276-281
栏目:
电子光学与信息工程
出版日期:
2008-07-31

文章信息/Info

Title:
A fast automatic image ultrasound recognition algorithm of the intra-uterine device
文章编号:
1000-2618(2008)03-0276-06
作者:
唐盛1陈思平12尹立东3刘国文3
1)浙江大学生物医学工程与仪器科学学院,杭州 310027
2)深圳大学信息工程学院,深圳 518060;
3)深圳市迈科龙电子有限公司,深圳 518057
Author(s):
TANG Sheng1CHEN Si-ping12YIN Li-dong3and LIU Guo-wen3
1)College of Biomedical Engineering and Instrument,Zhejiang University,Hangzhou 310027,P.R.China
2)College of Information,Shenzhen University,Shenzhen 518060,P.R.China
3)Shenzhen Microprofit Co Ltd,Shenzhen 518057,P.R.China
关键词:
超声图像节育环同质区域图像分割图像识别
Keywords:
ultrasound uterus imageintra-uterine device(IUD)homogeneous regionimage segmentationimage recognition
分类号:
TP 18;TP 391
文献标志码:
A
摘要:
提出一种快速全自动超声子宫图像节育环物体识别算法,算法包括全自动超声子宫图像分割和特定模式识别框架部分.基于719幅超声子宫图像开展算法性能验证.实验结果表明,该算法无需人工干预,平均耗时527 ms/幅,有环图像识别准确率达81.1%,无环图像识别准确率达94.7%.
Abstract:
A fast automatic IUD (intra-uterine device) recognition algorithm for the ultrasound uterus images was proposed.Components of the algorithm inclucled an automatic ultrasound uterus image segmentation algorithm and a specific pattern recognition framework.The performance of the algorithm was demonstrated by using 719 ultrasound uterus images,and the experimental results show that the average computation time is 527 milliseconds per frame.The recognition accuracy of the uterus image with or without IUD is 81.1% or 94.7% respectively.

参考文献/References:

[1]崔满华,安启哲.宫内节育器的避孕原理[J].中国实用妇科与产科杂志,1995,11(4):209-210.
[2]林江莉,汪小毅,李德玉,等.脂肪肝B超图像特征提取研究[J].四川大学学报,2005,37(1):130-134.
[3]Strzelecki M,Materka A,Drozdz J,等.超声心血管肿瘤的分类和分割[J].医学图像计算处理,2006,30(2):95-107(英文版).
[4]Bhanu Prakash K,Ramakrishnan A,Suresh S,等.运用超声图像特征进行胎儿肺部成熟程度分析[J].IEEE生物医学信息技术,2002,6(1):38-45(英文版).
[5]CHEN Yan,YIN Ru-ming,Flynn P,等.基于侵略性区域增长的超声图像斑点噪声抑制[J].模式识别快报,2003,24(4/5):677-691(英文版).
[6]ZHU Ya-nong,Williams S,Zwiggelaar R.应用计算机技术进行前列腺癌的检测和分级:综述[J].医学图像分析,2006,10(2):178-199(英文版).
[7]唐盛,陈思平.一种快速的全自动超声子宫图像分割算法[J].中国生物医学工程学报,2007,26(5):669-674.
[8]储颖,唐超伦,纪震,等.基于拉伸空间变换算法在DSA配准中的应用[J].深圳大学学报理工版,2005,22(2):127-132.
[9]Duda R,Hart P,Stork D.模式识别[M].纽约:John Wiley & Sons出版社,2001(英文版).
[10]Guyon I,Elisseeff A.变量及特征选择导论[J].机器学习研究杂志,2003,3(7/8):1157-1182(英文版).

[1]CUI Man-hua,AN Qi-zhe.The principle of preventing pregnancy of Intrauterine Device[J].Chinese Journal of Practical Gynecology and Obstetrics,1995,11(4):209-210(in Chinese).
[2]LIN Jiang-li,WANG Xiao-yi,LI De-yu,et al.Feature extraction for B-scan fatty liver image[J].Journal of Sichuan University,2005,37(1):130-134(in Chinese).
[3]Strzelecki M,Materka A,Drozdz J,et al.Classification and segmentation of intracardiac masses in cardiac tumor echocardiograms[J].Computerized Medical Imaging and Graphics,2006,30(2):95-107.
[4]Bhanu Prakash K,Ramakrishnan A,Suresh S,et al.Fetal lung maturity analysis using ultrasound image features[J].IEEE Trans Information Technology in Biomedicine,2002,6(1):38-45.
[5]CHEN Yan,YIN Ru-ming,Flynn P,et al.Aggressive region growing for speckle reduction in ultrasound images[J].Pattern Recognition Letters,2003,24(4/5):677-691.
[6]ZHU Ya-nong,Williams S,Zwiggelaar R.Computer technology in detection and staging of prostate carcinoma:A review[J].Medical Image Analysis,2006,10(2):178-199.
[7]TANG Sheng,CHEN Si-ping.A fast automatic segmentation algorithm on the ultrasound uterus images[J].Chinese Journal of Biomedical Engineering,2007,26(5):669-674(in Chinese).
[8]CHU Ying,TANG Chao-lun,JI Zhen,et al.Application of a spatial transformation method based on stretching to digital subtraction angiography registration[J].Journal of Shenzhen University Science and Engineering,2005,22(2):127-132(in Chinese).
[9]Duda R,Hart P,Stork D.Pattern Recognition[M].NY:John Wiley & Sons,2001.
[10]Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research,2003,3(7/8):1157-1182.

相似文献/References:

[1]罗娜,李璟,周成礼,等.超声图像中胎儿股骨的自动测量[J].深圳大学学报理工版,2017,34(No.4(331-440)):421.[doi:10.3724/SP.J.1249.2017.04421]
 Luo Na,Li Jing,Zhou Chengli,et al.Automatic measurement of fetal femur length in ultrasound image[J].Journal of Shenzhen University Science and Engineering,2017,34(3):421.[doi:10.3724/SP.J.1249.2017.04421]

备注/Memo

备注/Memo:
收稿日期:2007-12-07;修回日期:2008-04-21
基金项目:国家自然科学基金资助项目 (60772147)
作者简介:唐盛(1980-),男 (汉族),湖南省岳阳市人,浙江大学博士研究生.E-mail:eric_king@sohu.com
通讯作者:陈思平(1948-),男 (汉族),深圳大学教授、博士生导师.E-mail:chensiping@szu.edu.cn
更新日期/Last Update: 2008-08-12