[1]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31-37.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(No.1(001-094)):31-37.[doi:10.3724/SP.J.1249.2012.01031]
点击复制

地震作用下挡土墙主动土压力分布()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第29卷
期数:
2012年No.1(001-094)
页码:
31-37
栏目:
土木建筑工程
出版日期:
2012-01-06

文章信息/Info

Title:
Seismic active earth pressure of retaining wall
作者:
张永兴1陈林2
1) 重庆大学土木工程学院,重庆 400045
2) 德国斯图加特大学岩土工程研究所,德国 斯图加特 70569
Author(s):
ZHANG Yong-xing1 and CHEN Lin2
1) College of Civil Engineering, Chongqing University, Chongqing 400045, P.R.China
2) Institute of Geotechnical Engineering, University of Stuttgart, Stuttgart, Germany, 70569
关键词:
岩土工程主动土压力侧压力系数刚性挡土墙合力作用点倾覆力矩
Keywords:
geotechnical engineering active earth pressure lateral pressure coefficient retaining wall height of application of earth pressure overturning moment
分类号:
TU 432
DOI:
10.3724/SP.J.1249.2012.01031
文献标志码:
A
摘要:
在滑动楔体上沿竖向取水平薄层作为微分单元体,通过作用在单元体上的水平力、竖向力及地震力,建立挡土墙主动土压力基本方程,结合滑楔体力矩平衡条件,得到对应不同地震系数的侧压力系数,将其用于水平微分单元法,得到了地震荷载作用下挡土墙主动土压力理论公式.分析地震系数对土侧压力系数和土压力的影响,结果表明,土侧压力系数随水平地震系数增加而增大;当竖向地震系数小于零时,土侧压力系数随竖向地震系数增大而减小,当竖向地震系数大于零时,土侧压力系数随竖向地震系数增大而增大;随着竖向地震系数的增大,水平土压力强度最大值逐渐减小,随着水平地震系数的增大,水平土压力强度最大值先递减后增大;随着竖向及水平地震系数的增大,水平土压力最大值位置向墙顶方向移动,靠近墙底处土压力强度相对减小,靠近墙顶处土压力强度相对增大.
Abstract:
The basic analysis equations were set up by considering the equilibrium of the forces on a thin-layer element of the wedge.By using the equilibrium equation of the moments on the whole wedge, the lateral coefficient of earth pressure, and the earth pressure distribution along the wall were obtained.The effects of seismic coefficient on the lateral coefficient of earth pressure and the distribution of earth pressures were investigated.The results show that the lateral earth pressure coefficient increases as the horizontal seismic coefficient increases. The effect of the vertical seismic coefficient is more complicated. If the vertical seismic coefficient is less than zero, the lateral earth pressure coefficient decreases as the vertical seismic coefficient increases; If the vertical seismic coefficient is greater than zero, the lateral earth pressure coefficient increases as the vertical seismic coefficient increases; the maximum earth pressure gradually decreases as the vertical seismic coefficient increases. The maximum earth pressure first decreases and then increases as the horizontal seismic coefficient increases; as the increase of the vertical and horizontal seismic coefficient increases, the position of the maximum lateral seismic earth pressure moves gradually to the top of the wall, but near the bottom of the wall, the relative value of the earth pressure decreases, and near the top of the wall, the relative value of the earth pressure increases.The proposed method was verified by some experiment data.The calculated resultant and maximum earth pressure agree well with the experiment results.The effect of seismic coefficient on the points of application of the resultant earth pressure was investigated. The proposed method was compared with the Mononobe-Okabes theory.The results indicate that it is dangerous for the overturning stability of retaining walls with the translational movement mode if they are designed according to the Mononobe-Okabes theory.

参考文献/References:

[1] LIU Hua-bei. Elasto-plastic finite element analysis of geogrid-reinforced sandy soil retaining walls considering effect of creep and earthquake[J]. Geotechnical Engineering, 2007, 29(6): 917-921.(in Chinese)
刘华北. 考虑蠕变、地震效应的土工格栅砂性土加筋挡墙弹塑性有限元分析[J]. 岩土工程学报, 2007, 29(6): 917-921.
[2] ZHOU Jian, JIN Wei-feng. Coupled approach based numerical simulation of a retaining wall under seismic excitation[J]. Rock and Soil Mechanics, 2010, 31(12): 3949-3957.(in Chinese)
周健, 金炜枫. 基于耦合方法的挡土墙地震响应的数值模拟[J]. 岩土力学, 2010, 31(12): 3949-3957.
[3] Greco V R. Analytical earth thrust on walls with bilinear back face[J].Geotechnical Engineering, 2007, 160(1): 23-29.
[4] Hattamleh O A, Muhunthan B. Numerical procedures for deformation calculations in reinforced soil walls[J].Geotextiles and Geomembranes, 2006, 1(24): 52-57.
[5] Choudhury D, Nimbalkar S S. Pseudo dynamic approach of seismic active earth pressure behind retaining wall[J]. Geotechnical and Geological Engineering, 2006, 5(24): 1103-1113.
[6] Choudhary D, Singh S. New approach for estimation of static and seismic earth pressure[J].Geotechnical and Geological Engineering, 2006, 1(24): 117-127.
[7] Ghosh P. Seismic active earth pressure behind a nonvertical retaining wall using pseudo-dynamic analysis[J].Canadian Geotechnical Journal, 2008, 6(25): 117-123.
[8] CHEN Xue-liang, TAO Xia-xin, CHEN Xian-mai. Review of study on seismic response of gravity type retaining wall[J]. Journal of Natural Disasters, 2007, 3(15): 139-146.(in Chinese)
陈学良, 陶夏新, 陈宪麦.重力挡土墙地震反应研究评述[J]. 自然灾害学报, 2007, 3(15): 139-146.
[9] WANG Yun-qiu. Non-linear distribution of earth pressure during earthquake[J]. Journal of Hohai University Natural Sciences, 1983, 4: 61-72.(in Chinese)
王云球. 地震土压力的非线性分布[J]. 河海大学学报: 自然科学版, 1983, 4: 61-72.
[10] LIU Zhong-yu, YAN Fu-you. Dynamic active earth pressure on rigid retaining walls with submerged soils[J]. Rock and Soil Mechanics, 2006, 4(27): 566-570.(in Chinese)
刘忠玉, 闫富有.有地下水时刚性挡土墙动主动土压力[J]. 岩土力学, 2006, 4(27): 566-570.
[11] Azad A, Yasrobi S, Pak A. Seismic active earth pressure distribution behind rigid retaining walls[J].Soil Dynamics and Earthquake Engineering[J].2008, 5(28): 365-375.
[12] WANG Li-qiang, WANG Yuan-zhan, CHI Li-hua. Distribution of seismic soil pressure on a retaining wall[J]. China Harbour Engineering, 2007, 5: 1-5.(in Chinese)
王立强, 王元战, 迟丽华.挡土墙地震土压力及其分布[J]. 中国港湾建设, 2007, 5: 1-5.
[13] Baker R, Klein Y. An integrated limiting equilibrium approach for design of reinforced soil retaining structures, part I: formulation[J]. Geotextiles and Geomembranes, 2004, 3(22): 119-150.
[14] Chen H T, Hung W Y, Chang C C. Centrifuge modeling test of a geotextile reinforced wall with a very wet clayey backfill[J]. Geotextiles and Geomembranes, 2007, 6(25): 346-359.
[15] MING H Y, LI X S, Dafalias Y F. Numerical study of impact of soil anisotropy on seismic performance of retaining structure[J]. Journal of Shenzhen University Science and Engineering, 2007, 24(3): 221-227.(in Chinese)
明海燕,李相菘,Dafalias Y F. 砂土各向异性对挡土墙抗震性能影响数值分析[J].深圳大学学报理工版, 2007, 24(3): 221-227.
[16] ZHU Tong-hao, ZHENG Su-zhang. Model tests of the gravity retaining wall when considering the seismic load[J]. Sichuan Building Science, 1983, 1(7): 35-37.(in Chinese)
朱桐浩,郑素璋,兰永珍.模拟地震荷载作用重力式挡土墙土压力的模型试验[J].四川建筑科学研究, 1983, 1(7): 35-37.
[17] Magdi M El,Richard J.Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls[J].Geotextiles and Geomembranes, 2007, 25(1): 33-49.
[18] Christos Giarlelis George Mylonakis. Interpretation of dynamic retaining wall model tests in light of elastic and plastic solutions [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(1): 16-24.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(No.1(001-094)):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(No.1(001-094)):389.
[3]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-094)):78.[doi:10.3724/SP.J.1249.2013.01078]
[4]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-094)):190.[doi:10.3724/SP.J.1249.2013.02190]
[5]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(No.4(331-440)):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(No.1(001-094)):394.[doi:10.3724/SP.J.1249.2016.04394]
[6]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(No.5(441-550)):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(No.1(001-094)):484.[doi:10.3724/SP.J.1249.2016.05484]
[7]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(No.2(111-220)):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(No.1(001-094)):147.
[8]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(No.4(331-440)):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(No.1(001-094)):393.[doi:10.3724/SP.J.1249.2017.04393]
[9]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(No.5(441-550)):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(No.1(001-094)):501.[doi:10.3724/SP.J.1249.2017.05501]
[10]陈峰.早龄期玄武岩纤维水泥土的强度及变形特性[J].深圳大学学报理工版,2017,34(No.6(551-660)):611.[doi:10.3724/SP.J.1249.2017.06611]
 Chen Feng.Strength and deformation characteristics of basalt fiber cement-soil at early age[J].Journal of Shenzhen University Science and Engineering,2017,34(No.1(001-094)):611.[doi:10.3724/SP.J.1249.2017.06611]

备注/Memo

备注/Memo:
Received:2010-02-02;Revised:2011-04-03;Accepted:2011-11-20
Foundations:National Natural Science Foundation of China(50878218),National Science Fund for Distinguished Young Scholars (50625824)
Corresponding author:Professor ZHANG Yong-xing.E-mail:cqyxzhang@163.com
Citation:ZHANG Yong-xing, CHEN Lin. Seismic active earth pressure of retaining wall[J]. Journal of Shenzhen University Science and Engineering, 2012, 29(1): 31-37.(in Chinese)
基金项目:国家自然科学基金资助项目(50878218);国家杰出青年科学基金资助项目(50625824)
作者简介:张永兴(1961-),男(汉族),江苏省南通市人,重庆大学教授、博士生导师. E-mail:cqyxzhang@163.com
引文:张永兴,陈林. 地震作用下挡土墙主动土压力分布[J]. 深圳大学学报理工版,2012,29(1):31-37.
更新日期/Last Update: 2012-01-05