Yu Minghuai,Song Jun,et al.New applications of local surface plasmonic resonance[J].Journal of Shenzhen University Science and Engineering,2015,32(No.6(551-660)):577-585.[doi:10.3724/SP.J.1249.2015.06577]





New applications of local surface plasmonic resonance
1)深圳大学光电工程学院,深圳市微纳测试与生物医学成像重点实验室,光电子器件与系统教育部/广东省重点实验室,深圳 518060
2)海南大学材料与化工学院,海口 570228
Yu Minghuai1 2Song Jun1Qu Junle1and Niu Hanben1
1) College of Optoelectronics, Shenzhen Key Laboratory of Micro-Nano Measuring and Imaging in Biomedical Optics, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P.R.China
2) College of Materials Science and Chemical Engineering, Hainan University, Haikou 570228, P.R.China
plasma physics localized surface plasmons metal nanoparticles local-field enhancement Raman scattering plasmon laser photothermal effect
O 539
The characteristics of localized surface plasmons (LSPs) are introduced in this paper. The major progress in LSPs in the past few years is briefly surveyed, and some advances of the latest applications in theoretical and experimental aspects are summarized. These advances include surface plasmonic resonance amplification, influences of the shape and size of metallic nanoparticles on the plasmonic resonant spectrum, surface enhanced Raman scattering, plasmon lasers, plasmonic nonlinear effects, localized metallic photothermal effects and corresponding biological applications. The physical mechanism in the light effect and manipulation in nanoscale based on metallic nanostructures are also discussed.


[1] Wang Chuanxi, Wang Yu, Xu Lin, et al. A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging[J]. Small, 2013, 9(3): 413-420.
[2] Xu Qi, Liu Fang, Liu Yuxiang, et al. Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells[J]. Optics Express, 2014, 22(102): 301-310.
[3] Gao Yongkang, Gan Yiaoqiang, Bartoli F J. Breakthroughs in photonics 2013: research highlights on biosensors based on plasmonic nanostructures[J]. IEEE Photonics Journal, 2014, 6(2): 801-805.
[4] Amrollahi R, Hamdy M S, Mul G. Understanding promotion of photocatalytic activity of TiO2 by Au nanoparticle[J]. Journal of Catalysis, 2014, 319(8): 194-199.
[5] Li Jingguo, Zhao Tingting, Chen Tiankai, et al. Engineering noble metal nanomaterials for environmental applications[J]. Nanoscale, 2015, 7(17): 7502-7519.
[6] Lu Kuangda, He Chunbai, Lin Wenbin. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer[J]. Journal of the American Chemical Society, 2014, 136(48): 16712-16715.
[7] Zito G, Rusciano G, Pesce G, et al. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure[J]. Nanoscale, 2015, 7(18): 8593-8606.
[8] Brown C T A, Deckert V, Sergeev A M. Nanobiophotonics: photons that shine their light on the life at the nanoscale[J]. Biophotonics, 2010, 3(10/11): 639-640.
[9] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 2003, 90(2): 027402.
[10] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110-1112.
[11] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelenth scale[J]. Nature, 2009, 461(7264): 629-632.
[12] Li Zhiyuan, Xia Younan. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Letters, 2010, 10(1): 243-249.
[13] Zhang Chao, Chen Baoqin, Li Zhiyuan. Optical origin of subnanometer resolution in tip-enhanced Raman mapping[J]. The Journal of Physical Chemistry C, 2015, 119(21): 11858-11871
[14] Xian Jinhong, Chen Linchun, Niu Hanben, et al. Significant field enhancements in an individual silver nanoparticle near a substrate covered with a gain thin film[J]. Nanoscale, 2014, 6(22): 13994-14001.
[15] Song Jun, Tian Yuliang, Ye Shuai, et al. Characteristic analysis of low threshold plasmonic lasers using Ag nanoparticles with various shapes using photochemical synthesis[J]. Journal of Lightwave Technology, 2015,33(15): 3215-3223.
[16] Song Jun, Ye Shuai, Tian Yuliang, et al. Photochemical grown silver nanodecahedra with precise tuning of plasmonic resonance[J]. Nanoscale, 2015, 7(29): 12706-12712.
[17] Zhu Guiqin, Shi Jiangong, Wang Wanlin. Progress in preparation and applications of silver nano-materials[J]. Science & Technology Review, 2010, 28(22): 112-117.(in Chinese)
[18] Zhang Wanzhong, Qiao Xueliang, Chen Jianguo. Research process on the controlled preparation of silver nanomaterials[J]. Rare Metal Materials and Engineering, 2008, 37(11): 2059-2064.(in Chinese)
[19] Hutter T, Elliott S E, Mahajan S. Interaction of metallic nanoparticles with dielectric substrates: effect of opticalconstants[J]. Nanotechnology, 2013, 24(3): 035201-035208.
[20] Wang Dong, Song Jun, Xian Jinhong, et al. Characteristic analysis of broadband plasmonic emitting devices based on transformation optics[J]. Optics Express, 23(12): 16109-16121.
[21] Vanbel M K, Afanas’ev V V, Adelmann C, et al. Tunneling of holes is observed by second-harmonic generation[J]. Applied Physics Letters, 2013, 2(8): 082104.
[22] Wu Tingting, Sun Yunxu, Shao Xugang, et al. Highly efficient phase-matched third harmonic generation from mid-IR to near-IR regions using an asymmetric plasmonic slot waveguide[J]. IEEE Photonics Journal, 2014, 6(5): 4801709.
[23] Yi Anlin, Yan Lianshan, Luo Bin, et al. Polarization-insensitive and receiver-sensitivity-gain format conversion for PDM signals based on dual-orthogonal-pump four-wave mixing in highly nonlinear fiber[J]. IEEE Photonics Journal, 2015, 7(1): 7200606.
[24] Metzger B, Hentschel M, Schumacher T, et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas[J]. Nano Letters, 2014, 14(5): 2867-2872.
[25] Hentschel M, Utikal T, Giessen H, et al. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas[J]. Nano Letters, 2012, 12(7): 3778-3782.
[26] Hanke T, Cesar J, Vanessa K, et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas[J]. Nano Letters, 2012, 12(2): 992-996.
[27] Song Jun, Xian Jinhong, Niu Hanben, et al. Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials[J]. IEEE Photonics Journal, 2015, 7(4): 4500909.
[28] Liu Xin, Wang Xianliang, Zhou Bin, et al. Size-controlled synthesis of Cu2-xE(E=S,Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films[J]. Advanced Functional Materials, 2013, 23(10): 1256-1264.
[29] Yuan Peiyan, Lee Y H, Gnanasammandhan M K, et al. Plasmon enhanced upconversion luminescence of NaYF4∶Yb,Er@SiO2@Agcore-shell nanocomposites for cell imaging [J]. Nanoscale, 2012, 4(16): 5132-5137.
[30] Morton J G, Day E S, Halas N J, et al. Nanoshells for photothermal cancer therapy[J]. Methods in Molecular Biology, 2010, 624:101-117.
[31] Chen Jingyi, Glaus C, Laforest R, et al. Gold nanocages as photothermal transducers for cancer treatment[J]. Small, 2010, 6(7): 811-817.
[32] Hsiangkuo Y, Fales A M, Tuan V D. Peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance[J]. Journal of the American Chemical Society, 2012, 134(28): 11358-11361.
[33] Ayala-Orozco C, Urban C, Knight M W, et al. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells[J]. ACS Nano, 2014, 8(6): 6372-6381.
[34] Li Qiang, Zhang Weichun, Zhao Ding, et al. Photothermal enhancement in core-shell structured plasmonic nanoparticles[J]. Plasmonics, 2014, 9(3): 623-630.


 Ru Lili,Meng Yuedong,and Chen Longwei.Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films[J].Journal of Shenzhen University Science and Engineering,2013,30(No.6(551-660)):398.[doi:10.3724/SP.J.1249.2013.04398]
 Xiang Haoming,Qu Hao,Zhang Tao,et al.The diagnose of multi-channel poloidal correlation reflectometry on EAST[J].Journal of Shenzhen University Science and Engineering,2016,33(No.6(551-660)):606.[doi:10.3724/SP.J.1249.2016.06606]
 Zhao Zhe,Li Yonggang,et al.Theoretical study of effects of grain boundaries on the radiation damage iron and tungsten[J].Journal of Shenzhen University Science and Engineering,2017,34(No.6(551-660)):521.


Foundation:National Natural Science Foundation of China (61378091, 11204226); National Basic Research Program of China (2015CB352005)
Corresponding author:Associate professor Song Jun. E-mail: songjun@szu.edu.cn
Citation:Yu Minghuai,Song Jun,Qu Junle,et al.New applications of local surface plasmonic resonance[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(6): 577-585.(in Chinese)
引文:庾名槐,宋军,屈军乐,等.局域表面等离子的新应用[J]. 深圳大学学报理工版,2015,32(6):577-585.
更新日期/Last Update: 2015-11-06