[1]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(No.2(111-220)):147-156.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):147-156.
点击复制

填埋固化污泥土的压缩过程及微结构变化()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.2(111-220)
页码:
147-156
栏目:
土木建筑工程
出版日期:
2017-03-20

文章信息/Info

Title:
 Compression process of the landfilled solidified sludge soil and its microstructure changes
作者:
 林署炯冉孟胶陈剑尚张澄博
 中山大学地球科学与地质工程学院,广东广州 510275
Author(s):
 Lin Shujiong Ran Mengjiao Chen Jianshang and Zhang Chengbo
 School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, P.R.China
关键词:
 岩土工程填埋固化污泥土压缩试验分别加载微结构观察亚稳定状态
Keywords:
 geotechnical engineering landfilled solidified sludge soil compression test separate loading microstructure observation metastable stage
分类号:
TU 443
文献标志码:
A
摘要:
 为探讨填埋场中固化污泥土作为地基土的压缩变形特性,通过多组试样分别加载的侧限压缩试验及扫描电镜观察,对固化污泥土在不同应力作用下的变形规律及微结构变化进行研究.压缩试验显示:重塑固化污泥土孔隙比高、压缩性高,在100~200 kPa应力段压缩量较小,存在亚稳定状态,土中含水量随应力的增大呈指数衰减形式下降.成分解析显示:固化污泥土成分复杂,主要为叠片状的黏土矿物土畴,同时还含有矿物碎屑、水化硅酸钙、单硫型水化硫铝酸钙、虫卵、生物碎屑以及各种有机絮凝质等.微结构变化观察显示:低水平应力下,颗粒间存在较大的架空状孔隙,是土体压缩性高的主要原因,受水泥固化影响,土体中存在部分强度较高的大孔隙,使土体表现为一种亚稳定状态,当应力达到400 kPa时,亚稳定状态破坏,颗粒破碎变形严重,呈紧密的镶嵌状接触,应力增至800 kPa后,颗粒内部小孔隙也被压缩, 土体密实度提高.
Abstract:
 In order to explore the compression deformation characteristics of the landfilled solidified sludge soil as foundation soil, confined compression test by separate loading method and scanning electron microscope observation were carried to study the deformation rule and microstructure changes of the soil under different stresses. Compression test showed that, the remold solidified sludge soil has the characteristics of high porosity and compressibility. It has a metastable stage between 100 to 200 kPa and the compression amount is small. The water content is decreased exponentially during compressing. Component analysis showed that, the composition of the solidified sludge soil is quite complex, including sheet aggregated clay domain, mineral fragment, hydrated calcium silicate, single sulfur type calcium aluminate, insect eggs, bio detritus, and other organic matters. Microstructure observation showed that, in the low level stress stage, there are a lot of large overhead voids between the elements, which is the reason for the high compressibility of the soil. Affected by the cement solidification, the soil has some highly strength large voids and turns into a metastable stage. When the compress stress comes to 400kPa, the metastable stage is broken and the particles are damaged and deformed seriously with the contact becoming mosaic. Furtherly increasing the stress to 800 kPa, the micro voids inside the particles are also compressed and the density of the soil is increased.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(No.2(111-220)):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(No.2(111-220)):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(No.2(111-220)):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(No.2(111-220)):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]任祥忠,刘涛,张培新,等.锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2研究进展[J].深圳大学学报理工版,2014,31(No.3(221-330)):239.[doi:10.3724/SP.J.1249.2014.03239]
 Ren Xiangzhong,Liu Tao,Zhang Peixin,et al.Progress of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(111-220)):239.[doi:10.3724/SP.J.1249.2014.03239]
[7]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(No.4(331-440)):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(No.2(111-220)):394.[doi:10.3724/SP.J.1249.2016.04394]
[8]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(No.5(441-550)):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(No.2(111-220)):484.[doi:10.3724/SP.J.1249.2016.05484]
[9]郭梦雅,王江,石义寿.深圳市交通运输与产业结构的协整关系分析[J].深圳大学学报理工版,2017,34(No.2(111-220)):214.
 Guo Mengya,Wang Jiang,and Shi Yishou. Analysis of co-integration relationship between transportation and industrial structure in Shenzhen[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):214.
[10]黄健,张善文.基于LDC1614的精密刻度盘设计[J].深圳大学学报理工版,2017,34(No.2(111-220)):188.
 Huang Jian and Zhang Shanwen. Design of precision dial based on LDC1614[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):188.

更新日期/Last Update: 2017-03-03