[1]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(No.3(221-330)):272-277.[doi:10.3724/SP.J.1249.2017.03272]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(No.3(221-330)):272-277.[doi:10.3724/SP.J.1249.2017.03272]
点击复制

CARS显微成像系统的空间分辨率标定()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.3(221-330)
页码:
272-277
栏目:
光电工程
出版日期:
2017-05-30

文章信息/Info

Title:
Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy
文章编号:
201703008
作者:
刘伟刘双龙陈丹妮牛憨笨
深圳大学光电工程学院,光电子器件与系统教育部/广东省重点实验室, 广东深圳 518060
Author(s):
Liu Wei Liu Shuanglong Chen Danni and Niu Hanben
College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
光学工程相干反斯托克斯拉曼散射图像重构点扩展函数空间分辨率非线性光学拉曼散射信息光学
Keywords:
optical engineering coherent anti-Stokes Raman scattering microscopyimaging reconstruction point spread functionresolution nonlinear optics Raman scattering information optics
分类号:
Q 631;O 437
DOI:
10.3724/SP.J.1249.2017.03272
文献标志码:
A
摘要:
空间分辨率是衡量相干反斯托克斯拉曼散射(coherent anti-stokes Raman scattering,CARS)显微成像系统性能的一个重要指标. 选择直径为110 nm的聚苯乙烯微球进行三维成像,根据各个点的位置数据与光谱数据形成的二维数组分别重构了系统x-y平面和x-z平面的点扩展函数,准确测试了自行搭建的CARS显微成像系统的横向空间分辨率约为484 nm,轴向空间分辨率约为3.17 μm.
Abstract:
The spatial resolution is one of the most important indices for measuring the performance of coherent anti-stokes Raman scattering (CARS) microscopy system. Accordingly, we acquire the three dimensional images of the polystyrene micro-balls with 110 nm diameter in order to reconstruct the point spread function of the system on x-y and x-z planes based on the two dimensional array consisting of position data of each point and spectral data. The results show that lateral and axial spatial resolutions of the homemade CARS microscopy are about 484 nm and 3.17 μm, respectively.

参考文献/References:

[1] 刘立新,屈军乐,林子扬,等. 荧光寿命成像及其在生物医学中的应用[J].深圳大学学报理工版,2005,22(2):133-141.
Liu Lixin, Qu Junle, Lin Ziyang, et al. Fluorescence lifetime imaging and its biomedical applications[J]. Journal of Shenzhen University Science and Engineering, 2005, 22(2): 133-141.(in Chinese)
[2] 邵永红,李恒,王岩,等.基于同步扫描相机的荧光寿命测量系统研究[J].深圳大学学报理工版,2009,26(4):331-336.
Shao Yonghong, Li Heng, Wang Yan, et al. A fluorescence lifetime spectrometer based on a synchroscan streak camera[J]. Journal of Shenzhen University Science and Engineering, 2009, 26(4): 331-336.(in Chinese)
[3] 牛憨笨,陈丹妮,尹君.细胞内分子检测及成像技术研究[J].深圳大学学报理工版,2011,28(1):1-16.
Niu Hanben, Chen Danni, Yin Jun. Advances in approaches of molecules detecting and imaging in cells[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(1): 1-16.(in Chinese)
[4] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2005, 2(12): 910-919.
[5] Mukamel S. Principles of nonlinear optical spectroscopy[M]. New York, USA: Oxford University Press, 1999.
[6] Jalbert I, Stapleton F, Papas E, et al. In vivo confocal microscopy of the human cornea[J]. British Journal of Ophthalmology, 2003, 87(2): 225-236.
[7] Kiesslich R, Burg J, Vieth M, et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo[J]. Gastroenterology, 2004, 127(3): 706-713.
[8] Freudiger C W, Min W, Saar B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.
[9] Wang Hui, Sun Yubing, Yi Jinhui, et al. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy[J]. Biomaterials, 2015, 53: 117-126.
[10] Karuna A, Masia F, Borri P, et al. Hyperspectral volumetric coherent anti-Stokes Raman scattering microscopy: quantitative volume determination and NaCl as non-resonant standard[J]. Journal of Raman Spectroscopy, 2016, 47(9): 1167-1173.
[11] Lee Y J, Vega S L, Patel P J, et al. Quantitative, label-free characterization of stem cell differentiation at the single-cell level by broadband coherent anti-Stokes Raman scattering microscopy[J]. Tissue Engineering Part C: Methods, 2014, 20(7): 562-569.
[12] Krafft C, Dietzek B, Schmitt M, et al. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications[J]. Journal of Biomedical Optics, 2012, 17(4): 040801.
[13] Goodhead R M, Moger J, Galloway T S, et al. Tracing engineered nanomaterials in biological tissues using coherent anti-Stokes Raman scattering (CARS) micro-scopy: a critical review[J]. Nanotoxicology, 2015, 9(7): 928-939.
[14] Slipchenko M N, Cheng Jixin. Nonlinear Raman spectroscopy: coherent anti-Stokes Raman scattering (CARS)[M]// Encyclopedia of Biophysics. Berlin: Springer Berlin Heidelberg.,2013: 1744-1750.
[15] Maker P D, Terhune R W. Study of optical effects due to an induced polarization third order in the electric field strength[J]. Physical Review, 1965, 137(3A): A801-A818.
[16] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 1982, 7(8): 350-352.
[17] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142-4145.
[18] Cheng Jixin, Volkmer A, Xie X S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy[J]. Journal of the Optical Society of America B, 2002, 19(6): 1363-1375.
[19] Cheng Jixin, Jia Y K, Zheng Gengfeng, et al. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology[J]. Biophysical Journal, 2002, 83(1): 502-509.
[20] Hellerer T, Axng C, Brackmann C, et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy[J]. Proceedings of the National Academy of Sciences, 2007, 104(37): 14658-14663.
[21] Moura C C, Tare R S, Oreffo R O C, et al. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration[J]. Journal of The Royal Society Interface, 2016, 13(118): 20160182.
[22] Ganikhanov F, Evans C L, Saar B G, et al. High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy[J]. Optics Letters, 2006, 31(12): 1872-1874.
[23] Evans C L, Potma E O, Xie X S. Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy[J]. Optics Letters, 2004, 29(24): 2923-2925.
[24] Breunig H G, Weinigel M, Bückle R, et al. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber[J]. Laser Physics Letters, 2013, 10(2): 025604.
[25] Chemnitz M, Baumgartl M, Meyer T, et al. Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy[J]. Optics Express, 2012, 20(24): 26583-26595.
[26] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142.
[27] Nan X, Cheng J X, Xie X S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy[J]. Journal of Lipid Research, 2003, 44(11): 2202-2208.

相似文献/References:

[1]牛憨笨,陈丹妮,尹君.细胞内分子检测及成像技术研究[J].深圳大学学报理工版,2011,28(No.1(001-095)):1.
 Han-ben NIU,CHEN Dan-ni,and YIN Jun.Advances in approaches of molecules detecting and imaging in cells[J].Journal of Shenzhen University Science and Engineering,2011,28(No.3(221-330)):1.
[2]李春波,余春晖,柴金龙,等.超高速摄影仪转镜模态数值仿真分析[J].深圳大学学报理工版,2011,28(No.6(471-564)):513.
 LI Chun-bo,YU Chun-hui,CHAI Jin-long,et al.Modal analysis through numerical and experimental methods for rotating mirror of ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2011,28(No.3(221-330)):513.
[3]李春波,余春晖,李景镇,等.基于拓扑理论的超高速摄影仪转镜结构设计[J].深圳大学学报理工版,2012,29(No.4(283-376)):304.[doi:10.3724/SP.J.1249.2012.04304]
 LI Chun-bo,YU Chun-hui,LI Jing-zhen,et al.Structure design of rotating mirror based on the topology optimization theory for ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2012,29(No.3(221-330)):304.[doi:10.3724/SP.J.1249.2012.04304]
[4]雷耀虎,刘鑫,郭金川,等.超声对X射线分析光栅铋填充率影响研究[J].深圳大学学报理工版,2016,33(No.2(111-220)):138.[doi:10.3724/SP.J.1249.2016.02138]
 Lei Yaohu,Liu Xin,Guo Jinchuan,et al.Influence of ultrasonic on filling ratio of Bi in X-ray analyzer gratings[J].Journal of Shenzhen University Science and Engineering,2016,33(No.3(221-330)):138.[doi:10.3724/SP.J.1249.2016.02138]
[5]雷耀虎,黄建衡,刘鑫,等.X射线微分相衬成像系统莫尔条纹对比度的改善[J].深圳大学学报理工版,2016,33(No.5(441-550)):506.[doi:10.3724/SP.J.1249.2016.05506]
 Lei Yaohu,Huang Jianheng,Liu Xin,et al.Improvement of visibility of moiré fringe in X-ray differential phase-contrast imaging[J].Journal of Shenzhen University Science and Engineering,2016,33(No.3(221-330)):506.[doi:10.3724/SP.J.1249.2016.05506]
[6]王冬冬,谢晓华,任席奎,等.1 764 nm调Q锁模自拉曼激光器研究[J].深圳大学学报理工版,2016,33(No.5(441-550)):501.[doi:10.3724/SP.J.1249.2016.05501]
 Wang Dongdong,Xie Xiaohua,Ren Xikui,et al.Study on Q-switched and mode-locked self-Raman laser at 1 764[J].Journal of Shenzhen University Science and Engineering,2016,33(No.3(221-330)):501.[doi:10.3724/SP.J.1249.2016.05501]
[7]黄建衡,雷耀虎,刘鑫,等.X射线大视场相衬成像位移误差的数值分析[J].深圳大学学报理工版,2017,34(No.1(001-110)):8.[doi:10.3724/SP.J.1249.2017.01008]
 Huang Jianheng,Lei Yaohu,Liu Xin,et al.Numerical analysis of shift error in X-ray phase contrast imaging for large field of view[J].Journal of Shenzhen University Science and Engineering,2017,34(No.3(221-330)):8.[doi:10.3724/SP.J.1249.2017.01008]
[8]洪振厚,周彬,郭金川.锥束X射线CT图像重建的新型滤波函数[J].深圳大学学报理工版,2017,34(No.3(221-330)):284.[doi:10.3724/SP.J.1249.2017.03284]
 Hong Zhenhou,Zhou Bin,and Guo Jinchuan.A new filter function for the image reconstruction of cone beam X-ray CT[J].Journal of Shenzhen University Science and Engineering,2017,34(No.3(221-330)):284.[doi:10.3724/SP.J.1249.2017.03284]
[9]李恒,陈丹妮,于斌,等.DH-PSF三维动态多粒子追踪法在活细胞成像的应用[J].深圳大学学报理工版,2017,34(No.5(441-550)):526.
 Li Heng,Chen Danni,et al.Application of DH-PSF three-dimensional dynamic multi-particle tracking method in living cell imaging[J].Journal of Shenzhen University Science and Engineering,2017,34(No.3(221-330)):526.

备注/Memo

备注/Memo:
Received:2016-12-21;Accepted:2017-02-11
Foundation:The Special Funds of the Major Scientific Instruments Equipment Development of China (2012YQ15009203)
Corresponding author:Associate professor Chen Danni.E-mail: dannyc007@163.com
Citation:Liu Wei, Liu Shuanglong, Chen Danni, et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(3): 272-277.(in Chinese)
基金项目:国家重大科学仪器设备开发专项资助项目(2012YQ 15009203)
作者简介:刘伟(1980—),女,深圳大学博士后研究人员.研究方向:非线性光学.E-mail:liuwei616029@163.com
引文:刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J]. 深圳大学学报理工版,2017,34(3):272-277.
更新日期/Last Update: 2017-04-20