[1]缪春琼,蓝华斌,范平,等.双溶液法制备钙钛矿薄膜及其太阳能电池性能[J].深圳大学学报理工版,2017,34(No.5(441-550)):509-515.[doi:10.3724/SP.J.1249.2017.05509]
 Miao Chunqiong,Lan Huabin,Fan Ping,et al.Double-solutions effect on preparation of perovskite thin films and photovoltaic performance of related solar cells[J].Journal of Shenzhen University Science and Engineering,2017,34(No.5(441-550)):509-515.[doi:10.3724/SP.J.1249.2017.05509]
点击复制

双溶液法制备钙钛矿薄膜及其太阳能电池性能()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.5(441-550)
页码:
509-515
栏目:
物理与应用物理
出版日期:
2017-09-20

文章信息/Info

Title:
Double-solutions effect on preparation of perovskite thin films and photovoltaic performance of related solar cells
文章编号:
201705011
作者:
缪春琼1蓝华斌23范平23梁广兴23兰春锋23
1) 广西电力职业技术学院电力工程系,广西南宁 530000
2) 深圳大学物理与能源学院,薄膜物理与应用研究所&深圳市传感器技术重点实验室,广东深圳 518060
3) 光电子器件与系统教育部/广东省重点实验室,广东深圳 518060
Author(s):
Miao Chunqiong1 Lan Huabin2 Fan Ping23 Liang Guangxing23 and Lan Chunfeng23
1) Department of Electric Power Engineering, Guangxi Electrical Polytechnic Institute, Nanning 53000, Guangxi Province, P.R.China
2) College of Physics and Energy, Institute of Thin Film Physics and Applications & Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
3) Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
凝聚态物理学薄膜太阳能电池钙钛矿薄膜双溶液微结构光电转化性能
Keywords:
condensed matter physics thin-film solar cells perovskite film double solution method microstructures photovoltaic performance
分类号:
O 469
DOI:
10.3724/SP.J.1249.2017.05509
文献标志码:
A
摘要:
在高湿度空气环境中,通过不同质量浓度的碘甲胺溶液与PbI2薄膜反应制备钙钛矿薄膜与电池器件,研究碘甲胺质量浓度对薄膜形貌和太阳能电池性能的影响机理,发现高浓度碘甲胺溶液有利于纳米晶粒的致密薄膜生成,而低浓度碘甲胺溶液则形成带孔的微米晶粒薄膜,均不利于制备高性能钙钛矿电池.为克服单一溶液反应存在的问题,在改进的双溶液旋涂法中,利用8 mg/mL低浓度的碘甲胺溶液与PbI2薄膜反应10 s,再分别用15和30 mg/mL碘甲胺溶液对薄膜后处理,获得了晶粒粒径大,且致密的钙钛矿薄膜,碘化铅残留很少.相应的,在空气中制备的钙钛矿太阳能电池展示了更好的光电转化性能.
Abstract:
CH3NH3PbI3 perovskite films and the perovskite solar cells were prepared via reaction of PbI2 films and CH3NH3I (MAI) solutions of different concentrations under high-humidity ambient conditions.It was found that high concentration MAI solution contributes to the formation of the dense films with nano-scale perovskite grains, while low concentration MAI solution results in rough films with micrometer-scale grains and many voids and openings. None of these films could benefit the high-performance perovskite solar cells from the aspects of grain boundaries and coverage area. In order to overcome the disadvantage of the single solution method,modified double solution method was developed. Eight mg/mL low concentration MAI solution was used to react with PbI2 films for 10 s and then high concentration MAI solutions of 15 and 30 mg/mL were used for post-treatment. Consequently, dense CH3NH3PbI3 perovskite films with large-scale grains with little PbI2 residue were obtained. Accordingly, the perovskite solar cells fabricated in ambient conditions by this method exhibit a good photovoltaic performance.

参考文献/References:

[1] Green M A, Ho-Baillie A, Snaith H J.The emergence of perovskite solar cells[J].Nature Photonics,2014,8: 506-514.
[2] Zhang Wei,Eperon G E, Snaith H J. Metal halide perovskites for energy applications[J].Nature Energy,2016,1: 16048.
[3] Kojima A, Teshima K, Shirai Y,et al. Organometalhalideperovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[4] Kim H S, Lee C R, Im J H,et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports,2012, 2:591.
[5] National Renewable Energy Laboratoy. Best research-cell efficiencies[EB/OL].[2017-04-02]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[6] Grtzel M. The light and shade of perovskite solar cells[J]. Nature Materials, 2014,13(9):838-842.
[7] Mateker W R, McGehee M D. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics[J]. Advanced Materials, 2017, 29(10):1603940.
[8] Ahn N, Kwak K, Jang M S,et al. Trapped charge-driven degradation of perovskite solar cells[J]. Nature Communications, 2016, 7: 13422.
[9] Park N G, Grtzel M, Miyasaka T,et al. Towards stable and commercially available perovskite solar cells[J].Nature Energy, 2016, 1: 16152.
[10] Yang Mengjin, Zhang Taiyang, Schulz P, et al. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening[J]. Nature Communications, 2016, 7: 12305.
[11] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316-319.
[12] Liu Mingzhen, Johnston M B, SnaithH J.Efficient planar heterojunction perovskite solar cells by vapor deposition[J]. Nature,2013, 501(7467): 395-398.
[13] Fan Ping, Gu Di, Liang Guangxing, et al.High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition[J]. Scientific Reports, 2016, 6: 29910.
[14] Chen Qi, Zhou Huanping, Fang Yihao,et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells[J]. Nature Communications, 2015, 6: 7269.
[15] Im J H, Jang I H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology, 2014,9:927-932.
[16] Wei Zhanhua, Chen Haining, Yan Keyou, et al.Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbonelectrode and interface for planar perovskite solar cells[J]. Angewandte Chemie, 2014, 53(48): 13239-13243.
[17] Brenner T M, Rakita Y, Orr Y,et al. Conversion of single crystalline PbI2 to CH3NH3PbI3: structural relations and transformationdynamics[J].Chemistry of Materials,2016, 28(1): 6501-6510.
[18] Wang Kai, Shi Yantao, Li Bo, et al. Amorphous inorganic electron-selective layers for efficient perovskite solar cells: feasible strategy towards room-temperature fabrication[J]. Advanced Materials, 2016, 28(9):1891-1897.
[19] Venables J A, Spiller G D T, Hanbucken M,et al. Nucleation and growth of thin films[J]. Reports on Progress Physics, 1984, 47(4): 399-459.
[20] Mishchenko M I, Travis L D, Lacis A A. Scattering, absorption, and emission of light by small particles[M]. New York, USA: Cambridge University Press, 2002.
[21] Pazos-Outón L M, Szumilo M, Lamboll R.Photon recycling in lead iodide perovskite solar cells[J]. Science, 2016, 351(6280):1430-1434.

相似文献/References:

[1]罗运文,李秀燕.磁场引发石墨烯从金属态到绝缘态的相变[J].深圳大学学报理工版,2016,33(No.2(111-220)):143.[doi:10.3724/SP.J.1249.2016.02143]
 Luo Yunwenand Li Xiuyan.Magnetic field induced metal-insulator phasetransition in graphene[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(441-550)):143.[doi:10.3724/SP.J.1249.2016.02143]
[2]陈聚龙,梁广兴,范平,等.HC(NH2)2PbI3钙钛矿薄膜单源真空热蒸发制备及性能表征[J].深圳大学学报理工版,2016,33(No.4(331-440)):344.[doi:10.3724/SP.J.1249.2016.04344]
 Chen Julong,Liang Guangxing,Fan Ping,et al.Synthesis and Characterization of HC(NH2)2PbI3 perovskite thin film prepared by single source thermal evaporation[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(441-550)):344.[doi:10.3724/SP.J.1249.2016.04344]

备注/Memo

备注/Memo:
Received:2017-04-06;Accepted:2017-06-13
Foundation:National Natural Science Foundation of China (61404086); Basic Research Program of Shenzhen (JCYJ2015032414 0036866)
Corresponding author:Postdoctoral Lan Chunfeng. E-mail: lancf@szu.edu.cn
Citation:Miao Chunqiong, Lan Huabin, Fan Ping, et al. Double-solutions effect on preparation of perovskite thin films and photovoltaic performance of related solar cells[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(5): 509-515.(in Chinese)
基金项目:国家自然科学基金资助项目 (61404086); 深圳市基础研究资助项目(JCYJ20150324140036866)
作者简介:缪春琼(1976—),女,广西电力职业技术学院高级工程师. 研究方向: 电气工程及新能源. E-mail: mcqyyc123@163.com
引文:缪春琼,蓝华斌,范平,等.双溶液法制备钙钛矿薄膜及其太阳能电池性能[J]. 深圳大学学报理工版,2017,34(5):509-515.
更新日期/Last Update: 2017-09-11