[1]张妍琰,姚远,张娜.一种基于简谐振动的云资源分配方法[J].深圳大学学报理工版,2017,34(No.6(551-660)):591-596.[doi:10.3724/SP.J.1249.2017.06591]
 Zhang Yanyan,Yao Yuan,and Zhang Na.Harmonic vibration based resource allocation model in cloud environments[J].Journal of Shenzhen University Science and Engineering,2017,34(No.6(551-660)):591-596.[doi:10.3724/SP.J.1249.2017.06591]
点击复制

一种基于简谐振动的云资源分配方法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.6(551-660)
页码:
591-596
栏目:
电子与信息科学
出版日期:
2017-11-20

文章信息/Info

Title:
Harmonic vibration based resource allocation model in cloud environments
文章编号:
201706007
作者:
张妍琰姚远张娜
河南城建学院计算机与数据科学学院,河南平顶山 467036
Author(s):
Zhang Yanyan Yao Yuan and Zhang Na
School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467036,Henan Province, P.R.China
关键词:
云计算简谐振动资源划分能级满意度服务质量最优解
Keywords:
cloud computing harmonic vibration resource division energy level satisfaction quality of service optimal solution
分类号:
TP 391
DOI:
10.3724/SP.J.1249.2017.06591
文献标志码:
A
摘要:
为优化云服务系统的资源分配,提高不同资源类型的服务质量,提出基于简谐振动的云资源分配模型,设计一种求解模型的迭代算法.根据谐振子运动特性进行能级划分,加强对邻域内最优解的精细搜索,降低云资源被局部分配的概率,依据能级差构造解空间,使用简谐系统能量转换规律自适应调整解向量的搜索步长.通过实验验证分配模型的求解算法以及解的质量,相比分支定界法和遗传算法相比,该算法在较大规模问题上执行效率高且资源分配成本低.
Abstract:
In order to optimize the resource allocation of cloud service system and improve the quality of different resource types of services, we propose a cloud resource allocation model based on harmonic vibration and design an iterative algorithm to solve the developed model. Based on the harmonic oscillator movement characteristics, our model carries out the division of energy level, strengthens the fine search of the optimal solution in neighborhood, and reduces the possibility of the local distribution of cloud resources. Then, the solution space is reorganized based on the energy level difference. Meanwhile, the search step length of solution vector is adaptively adjusted by considering the energy conversion rule of harmonic system. Finally, the experiment validates the solution quality of proposed allocation model and solving algorithm by comparison with the branch/bound method and genetic algorithm. Especially, our method performs more efficiently and needs lower cost of resource allocation when dealing with the large-scale problems.

参考文献/References:

[1] Durao F, Carvalho J F S, Fonseka A, et al. A systematic review on cloud computing[J]. The Journal of Supercomputing, 2014, 68(3): 1321-1346.
[2] 陈康,郑维民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348.
Chen Kang, Zheng Weimin. Cloud computing: system instances and current research[J]. Journal of Software, 2009, 20(5): 1337-1348.(in Chinese)
[3] Lin Weiyu, Lin Guanyu, Wei Hungyu. Dynamic auction mechanism for cloud resource allocation[C]// Proceeding of the 10th IEEE/ACM Conference on Cluster, Cloud, and Grid Computing. Piscataway, USA: IEEE Computer Society, 2010: 591-592.
[4] Shang Shifeng, Jiang Jinlei, Wu Yongwei, et al. DABGPM: a double auction Bayesian game-based pricing model in cloud market[C]// Proceeding of the IFIP International Conference on Network and Parallel Computing. Heidelberg, Germany: Springer-Verlag, 2010: 155-164.
[5] Sun Dawei, Chang Guiran, Wang Chuan, et al. Efficient Nash equilibrium based cloud resource allocation by using a continuous double auction[C]// Proceeding of the International Conference on Computer Design and Applications. Piscataway, USA: IEEE Computer Society, 2010: 94-99.
[6] Zaman S, Grosu D. Combinatorial auction-based allocation of virtual machine instances in clouds[J]. Journal of Parallel and Distributed Computing, 2013, 73(4): 495-508.
[7] 胡志刚,刘艳.云环境下基于组合双向拍卖的动态资源定价[J].计算机工程,2012,38(8):19-21.
Hu Zhigang, Liu Yan. Dynamic resource pricing based on combinatorial double auction in cloud environment[J]. Computer Engineering, 2012, 38(8): 19-21.(in Chinese)
[8] 丁丁,罗四维,艾丽华.基于双向拍卖的适应性云计算资源分配机制[J].通信学报,2012,33(Z1):132-140.
Ding Ding, Luo Siwei, Ai Lihua. Adaptive double auction mechanism for cloud resource allocation[J]. Journal on Communications, 2012, 33(Z1): 132-140.(in Chinese)
[9] Zhu Q, Agrawal G. Resource provisioning with budget constraints for adaptive applications in cloud environments[J]. IEEE Transactions on Services Computing, 2012, 5(4): 497-511.
[10] Harman M, Mansouri S A, Zhang Y. Search-based software engineering: trends, techniques and applications[J]. ACM Computing Surveys, 2012, 45(1): 11-61.
[11] 王鹏.云计算的关键技术与应用实例[M].北京:人民邮电出版社,2010:168-174.
Wang Peng. The key technology of cloud computing and applications[M]. Beijing: Posts & Telecom Press, 2010: 168-174.(in Chinese)
[12] Shi Xuelin, Xu Ke. Utility maximization model of virtual machine scheduling in cloud environment[J]. Chinese Journal of Computers, 2013, 36(2): 252-262.
[13] 赵秀涛,张斌,张长胜.一种基于服务选取的SBS云资源优化分配方法[J].软件学报,2015,26(4):867-885.
Zhao Xiutao, Zhang Bin, Zhang Changsheng. Service selection based on resource allocation for SBS in cloud environments[J]. Journal of Software, 2015, 26(4): 867-885.(in Chinese)
[14] Shi Y, Eberhart R C. A modified particle swarm optimizer[C]// IEEE International Conference on Evolutionary Computation Proceedings. Piscataway, USA: IEEE, 1998: 69-73.
[15] 王赞,樊向宇,邹雨果,等.一种基于遗传算法的多缺陷定位方法[J].软件学报,2016,27(4):879-900.
Wang Zan, Fan Xiangyu, Zou Yuguo, et al. Genetic algorithm based multiple faults localization technique[J]. Journal of Software, 2016, 27(4): 879-900.(in Chinese)
[16] 刘全,王晓燕,傅启明,等.双精英协调进化遗传算法[J].软件学报,2012,23(4):765-775.
Liu Quan, Wang Xiaoyan, Fu Qiming, et al. Double elite coevolutionary genetic algorithm[J]. Journal of Software, 2012, 23(4): 765-775.(in Chinese)

相似文献/References:

[1]陈国良,蔡晔,罗秋明.国产个人高性能计算机系统研制[J].深圳大学学报理工版,2011,28(No.6(471-564)):471.
 CHEN Guo-liang,CAI Ye,and LUO Qiu-ming.The China made personal high performance computing system[J].Journal of Shenzhen University Science and Engineering,2011,28(No.6(551-660)):471.
[2]吕智涵,钟晨,冯良炳,等.用于普适WebGIS多尺度覆盖景观地图的高速索引[J].深圳大学学报理工版,2013,30(No.5(441-550)):480.[doi:10.3724/SP.J.1249.2013.05480]
 Lyu Zhihan,Zhong Chen,Feng Liangbing,et al.A high-speed index for the multi-scale overlay landscape map on ubiquitous WebGIS[J].Journal of Shenzhen University Science and Engineering,2013,30(No.6(551-660)):480.[doi:10.3724/SP.J.1249.2013.05480]
[3]张海辉,张勇,欧争光.基于任务驱动的云计算平台漏洞扫描系统[J].深圳大学学报理工版,2014,31(No.1(001-110)):71.[doi:10.3724/SP.J.1249.2014.01071]
 Zhang Haihui,Zhang Yong,and Ou Zhengguang.Vulnerability scanning system for cloud computing platform based on task driven[J].Journal of Shenzhen University Science and Engineering,2014,31(No.6(551-660)):71.[doi:10.3724/SP.J.1249.2014.01071]
[4]陈国良,毛睿,蔡晔.高性能计算及其相关新兴技术[J].深圳大学学报理工版,2015,32(No.1(001-110)):25.[doi:10.3724/SP.J.1249.2015.01025]
 Chen Guoliang,Mao Rui,and Cai Ye.High performance computing and related new technologies[J].Journal of Shenzhen University Science and Engineering,2015,32(No.6(551-660)):25.[doi:10.3724/SP.J.1249.2015.01025]

备注/Memo

备注/Memo:
Received:2016-07-28;Revised:2017-04-10;Accepted:2017-06-26
Foundation:National Natural Science Foundation of China (61202248)
Corresponding author:Associate professor Zhang Na. E-mail:gcschool2014@163.com
Citation:Zhang Yanyan, Yao Yuan, Zhang Na. Harmonic vibration based resource allocation model in cloud environments[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(6): 591-596.(in Chinese)
基金项目:国家自然科学基金资助项目(61202248)
作者简介:张妍琰(1981—),女,河南城建学院讲师.研究方向:云计算.E-mail:yanyanschool@163.com
引文:张妍琰,姚远,张娜.一种基于简谐振动的云资源分配方法[J]. 深圳大学学报理工版,2017,34(6):591-596.
更新日期/Last Update: 2017-10-10