[1]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(No.6(551-660)):618-624.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(No.6(551-660)):618-624.[doi:10.3724/SP.J.1249.2017.06618]
点击复制

基于X-ray μCT技术的钢筋锈胀特征分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.6(551-660)
页码:
618-624
栏目:
土木建筑工程
出版日期:
2017-11-20

文章信息/Info

Title:
Characterization of corrosion expansion feature of steel bar by means of X-ray μCT
文章编号:
201706011
作者:
刘昱清12董鹏2滕晓娟2贺林龙2洪舒贤2董必钦2邢锋12
1)中国地震局工程力学研究所地震工程与工程振动重点实验室,黑龙江哈尔滨 150080
2)深圳大学土木工程学院,广东省滨海土木工程耐久性重点实验室,广东深圳 518060
Author(s):
Liu Yuqing12 Dong Peng2 Teng Xiaojuan2 He Linlong2 Hong Shuxian2 Dong Biqin2 and Xing Feng12
1) Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, Heilongjiang Province, P.R.China
2) School of Civil Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R China
关键词:
建筑材料混凝土钢筋腐蚀膨胀系数时变X射线微观层析成像
Keywords:
building materials concrete reinforcement corrosion expansion coefficient time variation X-ray computer microtomography
分类号:
TU 501
DOI:
10.3724/SP.J.1249.2017.06618
文献标志码:
A
摘要:
针对传统锈胀解析模型无法实现对膨胀系数进行时变假设,利用X射线微观层析成像(X-ray μCT),对同一试块中钢筋腐蚀全过程进行追踪监测. 在现有研究基础上对钢筋腐蚀全过程的腐蚀膨胀系数时变规律进行研究,实现了对腐蚀形貌的实时表征和对腐蚀产物体积、钢筋腐蚀体积的定量计算. 结果表明,钢筋体积随着腐蚀过程呈下降趋势;腐蚀过程的膨胀系数逐渐增大(1.98~5.87),曲线斜率与腐蚀物的体积变化率一致. 随着腐蚀的不断深入,腐蚀产物的组分也具有相应的时变性. 时变腐蚀膨胀系数呈上升趋势,与腐蚀过程膨胀系数研究取值范围(2~6)吻合.
Abstract:
In the traditional model of corrosion calculations, the time-dependent assumption of expansion coefficient cannot be realized. In this paper, we use X-ray computer microtomography (X-ray μCT) to trace the whole corrosion process of the specimen. The time-dependent feature of corrosion expansion coefficient is studied on basis of the existing research. The corresponding corrosion morphology is given, and the volume of the corrosion product and the corrosion volume of the steel bar are calculated. The results show that the volume of the steel decreases with the corrosion process. The expansion coefficient in the corrosion process increases from 1.98 to 5.87, with the same rate of curve as the volume changing rate. As the corrosion process continues, the components of the corrosion product also have the corresponding time variability. The time dependent corrosion expansion coefficient shows an increasing trend, which is consistent with the value, which is between 2 and 6, of the expansion coefficient in corrosion process.

参考文献/References:

[1] 柳俊哲, 邢锋, 张振文,等. 混凝土中钢筋腐蚀的测定与评价方法[J]. 材料导报, 2008, 22(10): 80-83.
Liu Junzhe, Xing Feng, Zhang Zhenwen, et al. Measuring method and evaluation method of steel corrosion of reinforced concrete[J]. Materials Review, 2008, 22(10): 80-83.(in Chinese)
[2] 赵娟, 李倍. 温湿-氯离子耦合渗透跨海大桥寿命预测模型[J]. 深圳大学学报理工版, 2015, 32(6): 632-637.
Zhao Juan, Li Bei. Life prediction model of cross-sea bridge considering chloride ion penetration coupled with temperature and moisture transfer[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(6): 632-637.(in Chinese)
[3] 袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋混凝土梁的结构性能退化模型[J]. 土木工程学报, 2001, 34(3):47-52.
Yuan Yingshu, Jia Fuping, Cai Yue. The structural behavior deterioration model for corroded reinforced concrete beams[J]. China Civil Engineering Journal, 2001, 34(3): 47-52.(in Chinese)
[4] 金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报工学版, 2002, 36(4):371-380.
Jin Weiliang, Zhao Yuxi. State-of-art on durability of concrete structures[J]. Journal of Zhejiang University Engineering Science, 2002, 36(4): 371-380.(in Chinese)
[5] 冯乃谦, 蔡军旺, 牛全林,等. 山东沿海钢筋混凝土公路桥的劣化破坏及其对策的研究[J]. 混凝土, 2003, 159(1): 3-6.
Feng Naiqian, Cai Junwang, Niu Quanlin, et al. Study on the deterioration and destruction and its countermeasures for high way bridges along the coast in Shandong[J]. Concrete, 2003, 159(1): 3-6.(in Chinese)
[6] Lundgren K. Bond between ribbed bars and concrete (part 2) the effect of corrosion[J]. Magazine of Concrete Research, 2005, 57(7): 383-395.
[7] 陆春华, 赵羽习, 金伟良. 锈蚀钢筋混凝土保护层锈胀开裂时间的预测模型[J]. 建筑结构学报, 2010, 31(2): 85-92.
Lu Chunhua, Zhao Yuxi, Jin Weiliang. Modeling of time to corrosion-induced cover cracking in reinforced concrete structures[J]. Journal of Building Structures, 2010, 31(2): 85-92.(in Chinese)
[8] Xu Aimin, Shayan A. Relationship between reinforcing bar corrosion and concrete cracking[J]. ACI Materials Journal, 2016, 113(1): 3-12.
[9] Liu Youping. Modeling the time-to-corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal, 1998, 95(6): 675-681.
[10] Yuan Yingshu, Ji Yongsheng. Modeling corroded section configuration of steel bar in concrete structure[J]. Construction & Building Materials, 2009, 23(6): 2461-2466.
[11] 杜修力, 张仁波, 金浏. 钢筋非均匀锈蚀引发的混凝土保护层开裂细观数值研究[J]. 土木建筑与环境工程, 2015, 37(1): 73-80.
Du Xiuli, Zhang Renbo, Jin Liu. Meso-scale numerical investigation on the crack process of concrete cover induced by rebar non-uniform corrosion[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(1): 73-80.(in Chinese)
[12] 杜修力, 金浏. 钢筋锈胀引发混凝土保护层开裂破坏的细观数值研究[J].计算力学学报, 2015, 32(6): 772-780.
Du Xiuli, Jin Liu. Meso-scale numerical study on cracking of concrete cover due to steel reinforcement corrosion[J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 772-780.(in Chinese)
[13] Molina F J, Alonso C, Andrade C. Cover cracking as a function of rebar corrosion (part 2): numerical model[J]. Materials and Structures, 1993, 26(9): 532-548.
[14] Bhargava K, Ghosh A K, Mori Y, et al. Modeling of time to corrosion-induced cover cracking in reinforced concrete structures[J]. Cement & Concrete Research, 2005, 35(11): 2203-2218.
[15] Zhao Yuxi, Jin Weiliang. Modeling the amount of steel corrosion at the cracking of concrete cover[J]. Advances in Structural Engineering, 2006, 9(5): 687-696.
[16] Pan Tongyan, Wang Linbing. Finite-element analysis of chemical transport and reinforcement corrosion-induced cracking in variably saturated heterogeneous concrete[J]. Journal of Engineering Mechanics, 2011, 137(5): 334-345.
[17] Wang Hailong, Jin Weiliang, Sun Xiaoyan. Fracture model for protective layer cracking of reinforced concrete structure due to rebar corrosion[J]. Journal of Hydraulic Engineering, 2008, 39(7): 863-869.
[18] Bhargava K, Ghosh A K, Mori Y, et al. Analytical model for time to cover cracking in RC structures due to rebar corrosion[J]. Nuclear Engineering & Design, 2006, 236(11): 1123-1139.
[19] Val D V, Chernin L, Stewart M G. Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures[J]. Journal of Structural Engineering, 2009, 135(4): 376-385.
[20] Lu Chunhua, Jin Weiliang, Liu Ronggui. Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures[J]. Corrosion Science, 2011, 53(4): 1337-1347.
[21] Chernin L, Val D V. Prediction of corrosion-induced cover cracking in reinforced concrete structures[J]. Construction & Building Materials, 2011, 25(4): 1854-1869.
[22] 黎维华, 王远, 谭秀兰,等. X射线CT技术体积重构法表征异形泡沫金密度[J]. 强激光与粒子束, 2015, 27(3): 181-185.
Li Weihua, Wang Yuan, Tan Xiulan, et al. Density characterization of gold foam sample with abnormal surface using X-ray CT technology[J]. High Power Laser and Particle Beams, 2015, 27(3): 181-185.(in Chinese)
[23] 刘昱清,丁蔚健,秦韶丰, 等. 基于XCT技术的混凝土钢筋智能缓蚀系统性能表征[J]. 建筑材料学报, 2017, http://kns.cnki.net/kcms/detail/31.1764.TU.20170504.1017.034.html.
Liu Yuqing, Ding Weijian, Qin Shaofeng, et al. Inhibition performance evaluation of smart concrete system by X-ray μCT[J]. Journal of Building Materials, 2017, http://kns.cnki.net/kcms/detail/31.1764.TU.20170504.1017.034.html.(in Chinese)

相似文献/References:

[1]张武满,巴恒静,高小建,等.重复载荷作用下矿渣混凝土的渗透性[J].深圳大学学报理工版,2007,24(4):352.
 ZHANG Wu-man,BA Heng-jing,GAO Xiao-jian,et al.Permeability of slag concrete under repeated loading[J].Journal of Shenzhen University Science and Engineering,2007,24(No.6(551-660)):352.
[2]龙广成,邢锋,余志武,等.氯离子在混凝土中的沉积特性研究[J].深圳大学学报理工版,2008,25(2):117.
 LONG Guang-cheng,XING Feng,YU Zhi-wu,et al.Characteristics of chloride ion sedimentation in concrete[J].Journal of Shenzhen University Science and Engineering,2008,25(No.6(551-660)):117.
[3]刘伟,邢锋,谢友均.矿物掺合料对混凝土毛细吸水性的影响[J].深圳大学学报理工版,2008,25(3):303.
 LIU Wei,XING Feng,and XIE You-jun.Influence of mineral admixture on the water sorptivity of concrete[J].Journal of Shenzhen University Science and Engineering,2008,25(No.6(551-660)):303.
[4]杨文武,钱觉时,范英儒.混凝土早期收缩性能试验研究[J].深圳大学学报理工版,2009,26(1):81.
 YANG Wen-wu,QIAN Jue-shi,and FAN Ying-ru.Experimental research on early age shrinkage of concrete by eddy current method[J].Journal of Shenzhen University Science and Engineering,2009,26(No.6(551-660)):81.
[5]李伟文,邢锋,严志亮,等.硫酸盐腐蚀环境下CFRP-混凝土界面性能研究[J].深圳大学学报理工版,2009,26(1):86.
 LI Wei-wen,XING Feng,YAN Zhi-liang,et al.Investigation on the mechanical behavior of adhesive bonded CFRP-concrete joints under the sulfate solution[J].Journal of Shenzhen University Science and Engineering,2009,26(No.6(551-660)):86.
[6]戎志丹,孙伟,陈惠苏,等.超高性能水泥基材料的力学行为及机理分析[J].深圳大学学报理工版,2010,27(1):88.
 RONG Zhi-dan,SUN Wei,CHEN Hui-su,et al.Mechanical behaviors and microstructure mechanism analysis of ultra high performance cementitious composites[J].Journal of Shenzhen University Science and Engineering,2010,27(No.6(551-660)):88.
[7]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(No.6(551-660)):103.
[8]刘军,邢锋,董必钦,等.盐雾环境下氯离子在混凝土中的扩散[J].深圳大学学报理工版,2010,27(2):192.
 LIU Jun,XING Feng,DONG Bi-qin,et al.Diffusion of chloride ions into concrete in salt spray environment[J].Journal of Shenzhen University Science and Engineering,2010,27(No.6(551-660)):192.
[9]张峰,蔡建军,李树忱,等.混凝土冻融损伤厚度的超声波检测[J].深圳大学学报理工版,2012,29(No.3(189-282)):207.[doi:10.3724/SP.J.1249.2012.03207]
 ZHANG Feng,CAI Jian-jun,LI Shu-chen,et al.Ultrasonic detection of freeze-thaw damage thickness of concrete[J].Journal of Shenzhen University Science and Engineering,2012,29(No.6(551-660)):207.[doi:10.3724/SP.J.1249.2012.03207]
[10]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(No.6(551-660)):371.[doi:10.3724/SP.J.1249.2012.04371]
[11]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(No.1(001-110)):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(No.6(551-660)):68.[doi:10.3724/SP.J.1249.2015.01068]

备注/Memo

备注/Memo:
Received:2017-03-19;Accepted:2017-06-14
Foundation:National Natural Science Foundation of China (51538007,U1301241,51478270); Shenzhen Science and Technology Research Foundation (JCYJ20140418091413519)
Corresponding author:Professor Xing Feng.E-mail: xingf@szu.edu.cn
Citation:Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(6): 618-624.(in Chinese)
基金项目:国家自然科学基金资助项目(51538007,U1301241,51478270);深圳市科技计划资助项目(JCYJ20140418 091413519)
作者简介:刘昱清(1987—),男,深圳大学博士研究生.研究方向:滨海混凝土耐久性表征与分析.E-mail:yuenaqingjie@126.com
引文:刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J]. 深圳大学学报理工版,2017,34(6):618-624.
更新日期/Last Update: 2017-10-10