[1]程华,杨梅燕,吴佳辉,等.利用数字表达谱分析拟南芥叶片中盐响应基因[J].深圳大学学报理工版,2017,34(No.6(551-660)):631-639.[doi:10.3724/SP.J.1249.2017.06631]
 Cheng Hua,Yang Meiyan,Wu Jiahui,et al.Digital gene expression profiles of Arabidopsis thaliana under salt stress[J].Journal of Shenzhen University Science and Engineering,2017,34(No.6(551-660)):631-639.[doi:10.3724/SP.J.1249.2017.06631]
点击复制

利用数字表达谱分析拟南芥叶片中盐响应基因()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.6(551-660)
页码:
631-639
栏目:
生物工程
出版日期:
2017-11-20

文章信息/Info

Title:
Digital gene expression profiles of Arabidopsis thaliana under salt stress
文章编号:
201706013
作者:
程华杨梅燕吴佳辉孙楠黄健子郑易之刘昀
深圳大学生命与海洋科学学院,广东省植物表观遗传重点实验室,深圳市微生物基因工程重点实验室,广东深圳 518060
Author(s):
Cheng Hua Yang Meiyan Wu Jiahui Sun Nan Huang Jianzi Zheng Yizhi and Liu Yun
College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetic, Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
拟南芥 LEA基因乙烯应答因子盐胁迫数字基因表达谱差异表达基因
Keywords:
Arabidopsis thaliana late embryogenesis abundant (LEA) gene ethylene-responsive transcriptional factor (ERF) salt stress digital gene expression profiling (DGEP) differentially expressed gene (DEG)
分类号:
Q 943.2;Q 786
DOI:
10.3724/SP.J.1249.2017.06631
文献标志码:
A
摘要:
为揭示拟南芥在盐胁迫下基因表达谱的变化,为解决盐害提出新的方向,以哥伦比亚野生型拟南芥为材料,利用数字表达谱技术(digital gene expression profiling,DGEP)分析盐胁迫组(200 mmol/L NaCl处理2 h)和对照组的拟南芥叶片互补脱氧核糖核酸(complementary deoxyribonucleic acid, cDNA)文库,鉴定盐胁迫下拟南芥中差异表达的基因.结果显示,盐胁迫组中共有4 400个基因发生了差异表达,其中,1 513个基因上调表达,约占34.39%;2 887个下调表达,约占65.61%.这些基因主要富集于22个基因本体(gene ontology, GO)条目,包括核糖体构成、细胞膜和细胞器组成、应答胁迫、脯氨酸代谢等过程.进一步的KEGG(Kyoto encyclopedia of genes and genomes)分析表明,基础代谢、次生代谢以及光合和氧化代谢等32个通路的基因显著富集.此外,本研究筛选到6个显著差异表达的胚胎晚期富集蛋白(late embryogenesis abundant, LEA)基因,其中,3个LEA基因在盐胁迫条件下上调表达,3个下调表达,暗示着这6个LEA基因可能是拟南芥在应答盐胁迫过程发挥关键作用的抗逆基因.
Abstract:
Salt stress is one of the most serious abiotic stresses limiting crop growth and yield. Exploring the salt stress response gene can provide a new direction for solving salt damage. In order to reveal the Arabidopsis thaliana genes expression under salt stress, we explore the digital gene expression profiles (DGEP) of Arabidopsis thaliana (Columbia-0) leaves treated with water (control) or 200 mmol/L NaCl for 2 h. By comparison of gene expression of the treatment and control, 4 400 genes are identified to be differentially expressed, among which 1 513 genes are up-regulated, 2 887 genes are down-regulated. Gene ontology (GO) reveals that these genes are involved in 22 GO terms such as structural constituent of ribosome, membrane, response to stimulus, response to stress, and proline metabolism. Thirty-two pathways are enriched by Kyoto encyclopedia of genes and genomes (KEGG), including basic metabolism, secondary metabolism and oxidation-reduction processes. Meanwhile, 6 genes encoding late embryogenesis abundant (LEA) proteins are identified to express differently, which indicates that these LEA genes might be important in stress response process.

参考文献/References:

[1] Bostock R M, Pye M F, Roubtsova T V. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response[J]. Annual Review of Phytopathology, 2014,52:517-549.
[2] Van Loon L C. The intelligent behavior of plants[J]. Trends in Plant Science, 2016, 21(4): 286-294.
[3] Atkinson N J, Urwin P E. The interaction of plant biotic and abiotic stresses: from genes to the field[J]. Journal of Experimental Botany, 2012, 63(10): 3523-3543.
[4] Wang Hongyan, Wang Honglei, Shao Hongbo, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science, 2016, 7(67): 67-79.
[5] Zhu Jiankang. Plant salt tolerance[J]. Trends in Plant Science, 2001,6(2):66-71.
[6] Zhu Jiankang. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002,53:247-273.
[7] Zhu Jiangkang. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiology, 2000,124(3):941-948.
[8] 熊建文,韦剑锋,彭端.基因芯片在拟南芥非生物胁迫响应中的应用[J].贵州农业科学, 2012,40(2):23-27.
Xiong Jianwen, Wei Jianfeng, Peng Duan. Application of gene chip in response of abiotic stress in Arabidopsis thaliana[J]. Guizhou Agricultural Sciences, 2012, 40(2): 23-27.(in Chinese)
[9] Shen Xiaoyan, Wang Zenglan, Song Xiaofeng, et al. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis[J]. Plant Molecular Biology, 2014, 86(3): 303-317.
[10] Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana[J]. BMC Genomics, 2008,9(1):118.
[11] 马进, 郑钢. 利用转录组测序技术鉴定紫花苜蓿根系盐胁迫应答基因[J]. 核农学报, 2016,30(8):1470-1479.
Ma Jin, Zheng Gang. Identification of salt stress-responsive genes in root of alfalfa by transcriptome sequencing technology[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(8): 1470-1479.(in Chinese)
[12] 吉福桑,李元元,唐露,等.香蕉叶片响应盐胁迫转录组分析[J].分子植物育种, 2017(3): 875-882.
Ji Fusang, Li Yuanyuan, Tang Lu, et al. Analysis of banana leaves responses salt stress of transcriptome[J]. Molecular Plant Breeding, 2017(3): 875-882.(in Chinese)
[13] Zhang Zhi, Mao Cuiyu, Shi Zheng, et al. The amino acid metabolic and carbohydrate metabolic pathway play important roles during salt-stress response in tomato[J]. Frontiers in Plant Science, 2017, 8:1231.
[14] 李焕勇, 杨秀艳, 唐晓倩, 等. 植物响应盐胁迫组学研究进展[J]. 西北植物学报, 2016,36(12):2548-2557.
Li Huanyong,Yang Xiuyan,Tang Xiaoqian, et al. Omics research progress of plants under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(12): 2548-2557.(in Chinese)
[15] Wang Xingchun, Yang Zhirong, Zhang Shuwei, et al. Digital gene expression profiling analysis of the early adventitious shoot formation in Arabidopsis thaliana[J]. Chinese Journal of Biotechnology, 2013,29(2):189-202.
[16] Che Ping, Lall S, Nettleton D, et al. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture[J]. Plant Physiology, 2006, 141(2): 620-637.
[17] Chaitankar V, Karakulah G, Ratnapriya R, et al. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research[J]. Progress in Retinal and Eye Research, 2016,55:1-31.
[18] Zhang Dayong, Wan Qun, He Xiaolan, et al. Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean[J]. Science of the Total Environment, 2016,568:899-909.
[19] Willing E M, Rawat V, Mandakova T, et al. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation[J]. Nature Plants, 2015,1(2):1-7.
[20] Krishna G, Singh B K, Kim E K, et al. Progress in genetic engineering of peanut (Arachis hypogaea L.)—a review[J]. Plant Biotechnol J, 2015,13(2):147-162.
[21] 李铁柱, 杜红岩, 刘慧敏, 等. 杜仲果实和叶片转录组数据组装及基因功能注释[J]. 中南林业科技大学学报, 2012,32(11):122-130.
Li Tiezhu, Du Hongyan, Liu Huimin, et al. Transcriptome data assembly and gene function annotation of Eucommia fruits and leaves[J]. Journal of Central South Forestry University, 2012,32(11):122-130.(in Chinese)
[22] Fan Xiudong, Wang Jiaqi, Yang Na, et al. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput illumina sequencing[J]. Gene, 2013,512(2):392-402.
[23] Bies-Etheve N, Gaubier-Comella P, Debures A, et al. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana[J]. Plant Molecular Biology, 2008,67(1-2):107-124.
[24] 卢坤,张琳,曲存民,等.利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因[J].中国农业科学, 2015, 48(4): 630-645.
Lu Kun, Zhang Lin, Qu Cunmin, et al. Identification of drought stress-responsive genes in leaves of brassica napus by RNA sequencing[J]. Scientia Agricultura Sinica, 2015, 48(4): 630-645.(in Chinese)
[25] Hancock-Hanser B L, Frey A, Leslie M S, et al. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics[J]. Molecular Ecology Resources, 2013, 13(2): 254-268.
[26] 滕晓坤,肖华胜.基因芯片与高通量DNA测序技术前景分析[J].中国科学C辑:生命科学, 2008(10): 891-899.
Teng Xiaokun, Xiao Huasheng. The gene chip and high-throughput DNA sequencing technology[J]. Science China: Life Sciences , 2008(10): 891-899.(in Chinese)
[27] Gong Pengjuan, Zhang Junhong, Li Hanxia, et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato[J]. Journal of Experimental Botany, 2010, 61(13): 3563-3575.
[28] 张振亚, 裴翠明, 马进. 基于转录组和蛋白质组关联研究技术筛选紫花苜蓿耐盐相关候选基因[J]. 植物生理学报, 2016(3):317-324.
Zhang Zhenya, Pei Cuiming, Ma Jin. Screening of candidate salt tolerance-related genes in alfalfa based on transcriptome-proteome correlation research techniques[J]. Plant Physiology Journal, 2016(3):317-324.(in Chinese)
[29] Xu Zaolong, Ali Z, Yi Jinxin, et al. Expressed sequence tag-simple sequence repeat-based molecular variance in two Salicornia (Amaranthaceae) populations[J]. Genetics and Molecular Research, 2011,10(2):1262-1276.
[30] Li Jing, Mo Xiaorong, Wang Jirong, et al. BREVIS RADIX is involved in cytokinin-mediated inhibition of lateral root initiation in Arabidopsis[J]. Planta, 2009, 229(3): 593-603.
[31] Li Xu, Chapple C. Understanding lignification: challenges beyond monolignol biosynthesis[J]. Plant Physiology, 2010,154(2):449-452.
[32] Hu Y, Li W C, Xu Y Q, et al. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves[J]. Journal of Applied Genetics, 2009, 50(3): 213-223.
[33] Banu N A, Hoque A, Watanabe-Sugimoto M, et al. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress[J]. Journal of Plant Physiology, 2009,166(2):146-156.
[34] 王艳蓉, 张治国, 吴金霞. LEA蛋白及其在植物抗逆改良中的应用[J]. 生物技术通报, 2015(3):1-9.
Wang Yanrong, Zhang Zhiguo, Wu Jinxia. LEA protein and its application in improvement of stress tolerance in plants[J]. Biotechnology Bulletin, 2015(3): 1-9.(in Chinese)
[35] 陈丽伊, 刘国宝, 郑易之. 大豆PM1蛋白对脂质体及兔红细胞的稳定作用[J]. 深圳大学学报理工版, 2016, 33(5): 441-446.
Chen Liyi, Liu Guobao, Zheng Yizhi. Protection effect of soybean PM1 protein on liposome and the rabbit red blood cells[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(5): 441-446.(in Chinese)

相似文献/References:

[1]唐玉林[],Grill Erwin[].拟南芥谷氨酸-tRNA合成酶(AtGluRS)不能取代酵母GluRS[J].深圳大学学报理工版,2006,23(3):237.
 TANG Yu-lin and Grill Erwin.Arabidopsis GIuRS is not able to substitute for the yeast GIuRS[J].Journal of Shenzhen University Science and Engineering,2006,23(No.6(551-660)):237.
[2]唐玉林,Erwin Grill.利用酵母双杂交体系筛选拟南芥ABA信号新元件[J].深圳大学学报理工版,2004,21(3):210.
 TANG Yu-lin and GRILL Erwin.Screening of the new ABA signaling components in Arabidopsis using yeast two-hybrid system[J].Journal of Shenzhen University Science and Engineering,2004,21(No.6(551-660)):210.
[3]唐玉林.ABA信号元件ABI1和AtGluRs间相互作用分析[J].深圳大学学报理工版,2004,21(4):319.
 TANG Yu-lin.Analysis of the interaction of the ABA signaling components ABI1 and AtGluRS[J].Journal of Shenzhen University Science and Engineering,2004,21(No.6(551-660)):319.
[4]马轩,李盛本,莫蓓莘,等.拟南芥ago1-27突变体的RNA-seq分析[J].深圳大学学报理工版,2017,34(No.1(001-110)):27.[doi:10.3724/SP.J.1249.2017.01027]
 Ma Xuan,Li Shengben,Mo Beixin,et al.RNA-seq analysis on Arabidopsis ago1-27 mutant[J].Journal of Shenzhen University Science and Engineering,2017,34(No.6(551-660)):27.[doi:10.3724/SP.J.1249.2017.01027]
[5]岳路明,宋剑波,徐晓峰,等.拟南芥AGO基因家族分析及盐胁迫下的表达验证[J].深圳大学学报理工版,2017,34(No.4(331-440)):352.[doi:10.3724/SP.J.1249.2017.04352]
 Yue Luming,Song Jianbo,Xu Xiaofeng,et al.Bioinformatical and experimental analysis of AGO genes in response to salt stress[J].Journal of Shenzhen University Science and Engineering,2017,34(No.6(551-660)):352.[doi:10.3724/SP.J.1249.2017.04352]
[6]王伟,余泓漾,黄腾波,等.拟南芥JAG基因调控花器官中叶绿素a与b比例[J].深圳大学学报理工版,2018,35(No.1(001-110)):8.[doi:10.3724/SP.J.1249.2018.01008]
 WANG Wei,YU Hongyang,HUANG Tengbo,et al.JAG’s regulation in controlling the chlorophyll a/chlorophyll b ratio in Arabidopsis floral organ[J].Journal of Shenzhen University Science and Engineering,2018,35(No.6(551-660)):8.[doi:10.3724/SP.J.1249.2018.01008]

备注/Memo

备注/Memo:
Received:2017-05-30;Revised:2017-09-20;Accepted:2017-09-25
Foundation:National Natural Science Foundation of China (31300215, 31370289 )
Corresponding author:Associote professor Liu Yun.E-mail: sunshine@szu.edu.cn
Citation:Cheng Hua, Yang Meiyan, Wu Jiahui, et al.Digital gene expression profiles of Arabidopsis thaliana under salt stress[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(6): 631-639.(in Chinese)
基金项目:国家自然科学基金资助项目(31300215, 31370289)
作者简介:程华(1992—),男,深圳大学硕士研究生.研究方向:植物抗逆. E-mail:648577459@qq.com
引文:程华,杨梅燕,吴佳辉,等.利用数字表达谱分析拟南芥叶片中盐响应基因 [J]. 深圳大学学报理工版,2017,34(6):631-639.
更新日期/Last Update: 2017-10-10