[1]江昀,杨贤友,李越,等.大北-克深区块致密砂岩气藏水锁伤害防治[J].深圳大学学报理工版,2017,34(No.6(551-660)):640-646.[doi:10.3724/SP.J.1249.2017.06640]
 Jiang Yun,Yang Xianyou,Li Yue,et al.Solutions for water block damage of tight gas reservoirs in Dabei-Keshen area[J].Journal of Shenzhen University Science and Engineering,2017,34(No.6(551-660)):640-646.[doi:10.3724/SP.J.1249.2017.06640]
点击复制

大北-克深区块致密砂岩气藏水锁伤害防治()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年No.6(551-660)
页码:
640-646
栏目:
环境与能源
出版日期:
2017-11-20

文章信息/Info

Title:
Solutions for water block damage of tight gas reservoirs in Dabei-Keshen area
文章编号:
201706014
作者:
江昀1杨贤友1李越2石阳1许国庆1余玥3
1)中国石油勘探开发研究院, 北京 100083
2)中海石油(中国)有限公司天津分公司,天津 300459
3)中国石油西南油气田分公司川中油气矿,四川遂宁 629000
Author(s):
Jiang Yun1 Yang Xianyou1 Li Yue2 Shi Yang1 Xu Guoqing1 and Yu Yue3
1) Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, P.R.China
2) CNOOC(China)Co. Ltd. Tianjin Branch, Tianjin 300459, P.R.China
3) Chuanzhong Division of PetroChina Southwest Oil & Gas Field Company, Suining 629000, Sichuan Province, P.R.China
关键词:
水锁伤害气相相对渗透率水锁指数水锁影响因素耐高温复配表面活性剂解除水锁
Keywords:
water block damage relative gas permeability water block index sensitivity analysis thermo-stable composite surfactant system cleanup of water block
分类号:
TE 355
DOI:
10.3724/SP.J.1249.2017.06640
文献标志码:
A
摘要:
针对大北-克深区块致密砂岩储层易发生水锁伤害从而降低气井产能,研究目标区块水锁伤害机理及相应防治措施.基于气相相对渗透率建立水锁指数(water block index, WBI),分析水锁伤害程度及其影响因素,优选耐高温表面活性剂体系防治水锁伤害.结果表明,目标区块岩心水锁伤害程度属强水锁型(平均WBI为69.8%),基质渗透率、驱替压力均与 WBI呈负相关,含水饱和度、黏土矿物含量、流体黏度和表面张力均与WBI呈正相关,优选出耐温复配表面活性剂体系JY-2(由质量分数为0.05%的FC-25和质量分数为15%的甲醇组成)和JY-3(由质量分数为0.5%的HSC-25和质量分数为15%的甲醇组成),JY-3效果更好,可将目标区块岩心水锁指数 WBI从66.2%降至28.4%,达到解除水锁伤害目的.
Abstract:
Water block damage is likely to occur in tight gas reservoirs of Dabei-Keshen area and decreases production of gas wells. In order to investigate the mechanisms of water block and the corresponding measures, the water block index (WBI) is developed to appraise the damage degree of water block in approach of relative gas permeability, and composite surfactant system is optimized to clean up effects of water block damage through interfacial tension tests, wettability tests and spontaneous imbibition experiments. The results and conclusions are as follows: the average WBI for core samples from the targeted zone is 69.8%, belonging to the type of strong damage of water block. Sensitivity analysis shows matrix permeability and displacement pressure are in negative correlation with WBI, while water saturation, content of clays, fluid viscosity and interfacial tension are in positive correlation with WBI. In this work, thermo-stable surfactant systems JY-2(0.05% FS-31+15% methanol) and JY-3(0.5% HSC-25+15% methanol) are developed. JY-3 performs better in reducing WBI from 66.2% to less than 28.4%. Surfactants in the composite system contributes to reducing the interfacial tension and altering wettability, and methanol is beneficial to reducing water saturation through accelerating evaporation shortly. The synergy effect promotes the cleanup process of water block damage. The found mechanisms of water block damage and numerous experimental data provide us valuable insight on the economic and efficient development of gas fields.

参考文献/References:

[1] Khlaifat A L, Qutob H, Barakat N. Tight gas sands development is critical to future world energy resources[C]// SPE Middle East Unconventional Gas Conference and Exhibition.[S.l.]: Society of Petroleum Engineers, 2011: SPE-142049-MS. doi: https://doi.org/10.2118/142049-MS.
[2] 徐鹏,尹达,卢虎,等.库车山前致密砂岩气藏储层伤害分析及控制对策研究[J].科学技术与工程, 2016, 16(6): 172-177.
Xu Peng, Yin Da, Lu Hu, et al. Damage analysis of tight sandstone gas reservoir and control measures of Kuqa piedmont structure[J]. Science Technology and Engineering 2016, 16(6): 172-177.(in Chinese)
[3] 梅洁,张宇,李雷,等. 杭锦旗地区致密砂岩气藏水锁伤害评价及防治对策研究[J].石油地质工程,2014,28(2):132-135.
Mei Jie, Zhang Yu, Li Lei, et al. Water locking damage evaluation and prevention countermeasures of tight gas reservoir in Hangjinqi area[J]. Petroleum Geology and Engineering. 2014,28(2):132-135.(in Chinese)
[4] 杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015,32(3):257-265.
Yang Zhi, Zou Caineng, Wu Songtao, et al. Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015,32(3):257-265.(in Chinese)
[5] Penny G S, Soliman M Y, Conway M W, et al. Enhanced load water-recovery technique improves stimulation results[C]// SPE Annual Technical Conference.[S.l.]:[s.n.], 1983: SPE-12149. doi: https://doi.org/10.2118/12149-MS.
[6] Bennion D B, Thomas F B, Schulemeister B, et al. Water and oil base fluid retention in low permeability porous media—an update[C]// Canadian International Petroleum Conference.[S. l.]: Petroleum Society of Canada, 2006: PETSOC-2006-136. doi: https://doi.org/10.2118/2006-136.
[7] Wang Hongcai, Rezaee R, Saeedi A. Evaluation of microwave heating on fluid invasion and phase trapping in tight gas reservoirs[C]// SPE Asia Pacific Unconventional Resources Conference and Exhibition.[S.l.]: Society of Petroleum Engineers, 2015: SPE-176906-MS. doi: https://doi.org/10.2118/176906-MS.
[8] Rostami A, Nguyen D T, Nasr-El-Din H A. Laboratory studies on fluid-recovery enhancement and mitigation of phase trapping by use of microemulsion in gas sandstone formations[J]. SPE Production & Operations, 2016, 31(2): SPE-178421-PA. doi: https://doi.org/10.2118/178421-PA.
[9] Ding Minghua, Kantzas A. Investigation of liquid imbibition mechanisms using NMR[C]// International Symposium of the Society of Core Analysts held in Pau, France.[S.l.]:[s.n.], 2003: SCA2003-39.
[10] Mahadevan J, Sharma M M. Factors affecting cleanup of water blocks: a laboratory investigation[J]. SPE Journal, 2005, 10(3): 238-246.
[11] Adejare O O, Nasralla R A, Nasr-El-Din H A. A procedure for measuring contact angles when surfactants reduce the interfacial tension and cause oil droplets to spread[J]. SPE Reservoir Evaluation & Engineering, 2014, 17(3): SPE-160876-PA. doi: https://doi.org/10.2118/160876-MS.
[12] Tang Guoqing, Firoozabadi A. Relative permeability modification in gas/liquid systems through wettability alteration to intermediate gas wetting[J]. SPE Reservoir Evaluation & Engineering, 2000, 5(6): 427-436.
[13] Fahes M, Firoozabadi A. Wettability alteration to intermediate gas-wetting in gas-condensate reservoirs at high temperatures[J]. SPE Journal, 2007, 12(4): 397-407.
[14] Fernandez R, Fahes M M, Zoghbi B, et al. Wettability alteration at optimum fluorinated polymer concentration for improvement in gas mobility[C]// SPE EUROPEC/EAGE Annual Conference and Exhibition. 2011: SPE-143040-MS. doi: https://doi.org/10.2118/143040-MS.
[15] Liu Xuefen, Kang Yili, Luo Pingya. Wettability modification by fluoride and its application in aqueous phase trapping damage removal in tight sand stone reservoirs[J]. Journal of Petroleum Science and Engineering, 2015, 133(4): 201-207.
[16] 李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98-104.
Li Shuai, Ding Yunhong, Liu Guangfeng, et al. Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J]. Journal of Shenzhen University Science and Engineering, 2017,34(1):98-104.
[17] Ni Guanhua, Cheng Weimin, Lin Baiquan, et al. Experimental study on removing water blocking effect (WBE) from two aspects of the pore negative pressure and surfactants[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 596-602.
[18] Kim J, Gomaa A M, Nelson S G, et al. Engineering hydraulic fracturing chemical treatment to minimize water blocks: a simulated reservoir-on-a-chip approach[C]// SPE International Conference and Exhibition on Formation Damage Control.[S. l.]: Society of Petroleum Engineers, 2016: SPE-178959-MS. doi: https://doi.org/10.2118/178959-MS.
[19] Bin Yuan, Moghanloo R G, Zheng Da. Analytical modeling of nanofluid injection to improve the performance of low salinity water flooding[C]// Offshore Technology Conference Asia.[S.l.]: Offshore Technology Conference, 2016: OTC-26363-MS. doi: https://doi.org/10.4043/26363-MS.
[20] Fan Haiming, Lyu Jian, Zhao Jingbing, et al. Evaluation method and treatment effectiveness analysis of anti-water blocking agent[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1374-1380.

备注/Memo

备注/Memo:
Received:2017-03-18;Revised:2017-08-22;Accepted:2017-09-18
Foundation:National Science and Technology Major Project of China (2011ZX05046005)
Corresponding author:Professor Yang Xianyou.E-mail: yangxianyou@petrochina.com.cn
Citation:Jiang Yun, Yang Xianyou, Li Yue, et al.Solutions for water block damage of tight gas reservoirs in Dabei-Keshen area[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(6): 640-646.(in Chinese)
基金项目:国家科技重大专项资助项目(2011ZX05046005)
作者简介:江昀(1990—),男,中国石油勘探开发研究院博士研究生.研究方向:储层改造.E-mail:jiangyun119@petrochina.com.cn
引文:江昀,杨贤友,李越,等. 大北-克深区块致密砂岩气藏水锁伤害防治[J]. 深圳大学学报理工版,2017,34(6):640-646.
更新日期/Last Update: 2017-10-09