[1]敖英,张杰,李枫,等.靶向敲除ck2α基因及其功能分析[J].深圳大学学报理工版,2018,35(No.1(001-110)):1-7.[doi:10.3724/SP.J.1249.2018.01001]
 AO Ying,ZHANG Jie,LI Feng,et al.Target knockout of ck2α gene and its functional analysis[J].Journal of Shenzhen University Science and Engineering,2018,35(No.1(001-110)):1-7.[doi:10.3724/SP.J.1249.2018.01001]
点击复制

靶向敲除ck2α基因及其功能分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第35卷
期数:
2018年No.1(001-110)
页码:
1-7
栏目:
生物工程
出版日期:
2018-01-12

文章信息/Info

Title:
Target knockout of ck2α gene and its functional analysis
文章编号:
201801001
作者:
敖英1张杰1李枫2金美玲1
1)深圳大学基础医学院,广东深圳 518060
2)武汉大学基础医学院,湖北武汉 430072
Author(s):
AO Ying1 ZHANG Jie1 LI Feng2 and JIN Meiling1
1) School of Basic Medical Science, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Health Science Center, Wuhan University, Wuhan 430072, Hubei Province, P.R.China
关键词:
基因编辑CRISPR-Cas9技术基因敲除蛋白激酶CK2细胞增殖结肠癌细胞衰老
Keywords:
gene editing CRISPR-Cas9 gene knockout protein kinase CK2 cell proliferation colorectal cancer cellular senescence
分类号:
R 392-3
DOI:
10.3724/SP.J.1249.2018.01001
文献标志码:
A
摘要:
运用CRISPR-Cas9基因编辑技术,在人结肠癌细胞株HCT116中敲除蛋白激酶基因ck2α, 利用敲除细胞系研究CK2参与结肠癌调控的分子机制.通过构建PX459-g CK2α载体成功转染HCT116细胞,筛选出基因完全敲除的细胞系,考察其是否参与癌细胞增殖和迁移能力.结果显示,利用CRISPR-Cas9基因编辑技术可成功获得ck2α完全敲除的HCT116细胞系, ck2α敲除后细胞的增殖率和迁移能力显著降低,细胞的衰老进程加快.
Abstract:
Protein kinase CK2α was knocked out in human colorectal cancer cell line HCT116 by using CRISPR-Cas9 gene editing technique to investigate CK2α’s function. PX459-g CK2α vector was successfully transfected into HCT116 cells, and screened gene knockout cell line to further analysis whether it was involved in the proliferation and migration of cancer cells. The results show that HCT116 cell line with ck2α knockout is successfully obtained by CRISPR-Cas9 gene editing technique. ck2α knockout can significantly reduce the cell proliferation rate and migration ability, and accelerate the process of cellular senescence.

参考文献/References:

[1] WIEDENHEFT B, STERNBERG S H, DOUDNA J A.RNA-guided genetic silencing systems in bacteria and archaea[J].Nature,2012,482(7385):331-338.
[2] GOPHNA U, BRODT A.CRISPR/Cas systems in archaea:What array spacers can teach us about parasitism and gene exchange in the 3rd domain of life[J]. Mobile Genetic Elements,2012,2(1):63-64.
[3] LO T W, PICKLE C S, LIN S,et al. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR-Cas9 to engineer insertions and deletions[J].Genetics,2013,195(2):331-348.
[4] CHAKRABORTY S, JI H, KABADI A M,et al.A CRISPR-Cas9-based system for reprogramming cell lineage specification[J]. Stem Cell Reports,2014,3(6):940-947.
[5] VAN DER OOST J, WESTRA E R, JACKSON R N,et al.Unravelling the structural and mechanistic basis of CRISPR-Cas systems[J]. Nature Reviews Microbiology,2014,12(7):479-492.
[6] DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J].Nature,2011,471(7340):602.
[7] JINEK M, CHYLINSKI K, FONFARA I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(696):816-821.
[8] MALI P, YANG Luhan, ESVELT K M, et al.RNA-Guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.
[9] CRADICK T J, FINE E J, ANTICO C J,et al.CRISPR-Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity[J].Nucleic Acids Research,2013,41(20):9584-9592.
[10] MONTENARH M. Protein kinase CK2 and angiogenesis[J].Advances in Clinical and Experimental Medicine : Official Organ Wroclaw Medical University,2014,23(2):153-158.
[11] BATTISTUTTA R, LOLLI G. Structural and functional determinants of protein kinase CK2α: facts and open questions[J].Molecular and Cellular Biochemistry,2011,356(1/2):67-73.
[12] AMPOFO E, RUDZITIS-AUTH J, DAHMKE I N,et al. Inhibition of protein kinase CK2 suppresses tumor necrosis factor(TNF)-α-induced leukocyte-endothelial cell interaction[J]. Biochimica et Biophysica Acta,2015,1852(10):2123-2136.
[13] ZOU Jinjin, LUO Hesan, ZENG Qin,et al. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes[J].Journal of Translational Medicine,2011,9:97.
[14] SUN Yaohui, SUN Yuxin, ZHU Kan,et al. An experimental model for simultaneous study of migration of cell fragments, single cells, and cell sheets[J].Methods in Molecular Biology,2016,1407:251-272.
[15] KASAP C, ELEMENTO O, KAPOOR T M. Drug target Seq R: a genomics- and CRISPR-Cas9-based method to analyze drug targets[J].Nature Chemical Biology,2014,10(8):626-628.
[16] MADDALO D, MANCHADO E, CONCEPCION C P,et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR-Cas9 system[J].Nature,2014,516(7531):423-427.
[17] GROBARCZYK B, FRANCO B, HANON K, et al. Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR-Cas9 system[J].Stem Cell Reviews,2015,11(5):774-787.
[18] KIM D, BAE Sangsu, PARK J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J].Nature Methods,2015,12(3):237-243.
[19] VAN T C, WEBER T, WEFERS B,et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells[J].Nature Biotechnology,2015,33(5):543-548.
[20] SHALEM O, SANJANA N E, HARTENIAN E, et al. Genome-Scale CRISPR-Cas9 knockout screening in human cells[J].Science,2014,343(6166):84-87.
[21] ZHANG Feng, WEN Yan, GUO Xiong.CRISPR-Cas9 for genome editing: progress, implications and challenges[J].Human Molecular Genetics,2014,23(R1):R40-R46.
[22] ZHOU Yuexin, ZHU Shiyou, CAI Changzu, et al. High-throughput screening of a CRISPR-Cas9 library for functional genomics in human cells[J].Nature,2014,509(751):487.
[23] CHARI R, MALI P, MOOSBURNER M,et al. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach[J].Nature Methods,2015,12(9):823-826.
[24] SCAGLIONI P P, YUNG T M, CAI Lufan, et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor[J].Cell,2006,126(2):269-283.
[25] PALAZZO E, KELLETT M, CATAISSON C, et al. The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth[J].Oncogene,2016,35(24):3114-3124.
[26] ZHANG Guoxin, XIE Yinyin, ZHOU Ying, et al.p53 pathway is involved in cell competition during mouse embryogenesis[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(3):498-503.

备注/Memo

备注/Memo:
Received:2017-04-17;Revised:2017-09-27;Accepted:2017-10-20
Foundation:National Natural Science Foundation of China (81471407);Shenzhen Science and Technology Research Foundation (JCYJ20140418095735635)
Corresponding author:Professor Li Feng. E-mail: fli222@whu.edu.cn; Postdoctoral Jin Meiling. E-mail: y102513@163.com
Citation:AO Ying, ZHANG Jie, LI Feng, et al. Target knockout of ck2α gene and its functional analysis[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(1): 1-7.(in Chinese)
基金项目:国家自然科学基金资助项目(81471407);深圳市科技计划项目(JCYJ20140418095735635)
作者简介:敖英(1987—),女,深圳大学博士后研究人员.研究方向:免疫、肥胖和糖脂代谢.E-mail:kellysweet@163.com
引文:敖英,张杰,李枫,等.靶向敲除ck2α基因及其功能分析[J]. 深圳大学学报理工版,2018,35(1):1-7.
更新日期/Last Update: 2017-12-22