[1]张坤,张泽,史向阳,等.动荷载下土体温度和孔隙水压力的变化规律[J].深圳大学学报理工版,2018,35(No.2(111-220)):111-118.[doi:10.3724/SP.J.1249.2018.02111]
 ZHANG Kun,ZHANG Ze,SHI Xiangyang,et al.The temperature and pore water pressure in soil subjected to dynamic load[J].Journal of Shenzhen University Science and Engineering,2018,35(No.2(111-220)):111-118.[doi:10.3724/SP.J.1249.2018.02111]
点击复制

动荷载下土体温度和孔隙水压力的变化规律()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第35卷
期数:
2018年No.2(111-220)
页码:
111-118
栏目:
土木建筑工程
出版日期:
2018-03-20

文章信息/Info

Title:
The temperature and pore water pressure in soil subjected to dynamic load
文章编号:
201802001
作者:
张坤1张泽2史向阳23李四海4肖东辉23
1) 甘肃省交通科学研究院有限公司,甘肃兰州730070
2) 中国科学院西北生态环境资源研究院冻土工程国家重点实验室,甘肃兰州 730000
3) 中国科学院大学,北京 100049
4) 青海省盐业股份有限公司茶卡制盐分公司,青海海西 817101
Author(s):
ZHANG Kun1 ZHANG Ze2 SHI Xiangyang2 3 LI Sihai4 and XIAO Donghui2 3
1) Gansu Transportation Research Institute Co. Ltd., Lanzhou 730070, Gansu Province, P.R.China
2) State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, P.R.China
3) University of Chinese Academy of Sciences, Beijing 100049, P.R.China
4) Chaka Salt Branch, Qinghai Salt Industry Co. Ltd., Haixi 817101, Qinghai Province, P.R.China
关键词:
岩土工程冻融循环动荷载土体温度水分迁移孔隙水压力
Keywords:
geotechnical engineering freeze-thaw cycle dynamic load soil temperature moisture migration pore water pressure
分类号:
TU 475;S 152.7
DOI:
10.3724/SP.J.1249.2018.02111
文献标志码:
A
摘要:
动荷载对土体的挤压作用能够改变土体内部孔隙的大小,进而导致土体内部孔隙水压力发生变化. 为了验证该物理过程,通过模型试验,研究冻融循环作用下无荷载和动荷载时土体温度和孔隙水压力的变化规律.结果表明,冻融循环作用下,当外部温度达到最高值时,土体上部0~10 cm和底部20~40 cm范围内的等温线密集,温度梯度较大,而10~20 cm范围内的等温线较稀疏,温度梯度较小;当温度达到最低值时,土体内部等温线分布均匀. 在无荷载条件下,土体内部孔隙水压力随冻融次数增加呈增大趋势,动荷载条件下亦呈现同样规律. 动荷载引起土体内部孔隙水压力在冻融过程中发生变化,在冻融初期,振动底板下方5 cm范围内的孔隙水压力为正值,其他区域为负值.随着冻融循环次数的增加,振动底板下方正孔隙水压力的范围扩大到10 cm,而且在振动底板下方20 cm处出现高孔隙水压力区域.
Abstract:
The pore scale and pore water pressure in soil change with the compression of dynamic load. The changes of the temperature and the pore water pressure in soil were studied with and without the dynamic load. The results indicate that the isotherms at the upper part of the soil (0~10 cm) and at the bottom part (20~40 cm) are intensively dense and temperature gradients are large, but isotherms are sparse and temperature gradients are small at the scope of 10~20 cm, when the temperature reaches the maximum value; the isotherms in soil distribute uniformly when the temperature reaches the minimum value. The pore water pressure increases with the increasing numbers of freezing-thawing cycles under the conditions of no load and the dynamic load. In the early freezing-thawing, the values of pore water pressures in soil is positive in the range of 0-5 cm below the vibration plate, and they are negative in other regions. With the increasing numbers of freezing-thawing cycles, the region of the positive pore water pressure under the vibration plate extends to the depth of 10 cm, and the high pore water pressure area appears at the depth of 20 cm under the vibration plate.

参考文献/References:

[1] QI Jilin, VERMEER P A, CHENG Guodong. A review of the influence of freeze-thaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17(3): 245-252.
[2] CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J].Engineering Geology, 1979, 13(1/2/3/4): 73-92.
[3] CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Canadian Geotechnical Journal, 1996, 33(4): 529-537.
[4] 杨平, 张婷. 人工冻融土物理力学性能研究[J]. 冰川冻土, 2002, 24(5): 665-667.
YANG Ping, ZHANG Ting. The physical and the mechanical properties of original and frozen-thawed soil[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 665-667.(in Chinese)
[5] 齐吉琳, 张建明,朱元林. 冻融作用对土结构性影响的土力学意义[J]. 岩石力学与工程学报, 2003, 23(S2): 2690-2694.
QI Jilin, ZHANG Jianming, ZHU Yuanlin. Influence of freezing-thawing on soil structure and its soil mechanics significance[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 23(S2): 2690-2694.(in Chinese)
[6] 周海林, 王星华. 动三轴试验中的饱和砂土孔隙水压力分析[J]. 铁道学报, 2002, 24(6): 93-98.
ZHOU Hailin, WANG Xinghua. Study on the pore water pressure of saturated sand in dynamic triaxial test[J]. Journal of the China Railway Society, 2002, 24(6): 93-98.(in Chinese)
[7] 张莲海, 马巍, 杨成松. 冻融循环过程中土体的孔隙水压力测试研究[J]. 岩土力学, 2015, 36(7): 1856-1864.
ZHANG Lianhai, MA Wei, YANG Chengsong. Pore water pressure measurement for soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2015, 36(7): 1856-1864.(in Chinese)
[8] EIGENBROD K D, KNUTSSON S, SHENG D. Pore-water pressures in freezing and thawing fine-grained soils[J]. Journal of Cold Regions Engineering, 1996, 10(2): 77-92.
[9] 雒妞丽, 毛雪松. 湿度对青藏公路多年冻土路基稳定性的影响[J]. 路基工程, 2011(6): 5-7.
LUO Niuli,MAO Xuesong. Influence of humidity on permafrost subgrade stability in qinghai-tibet highway[J]. Subgrade Engineering, 2011(6): 5-7.(in Chinese)
[10] 石峰. 动荷载条件下冻土融化固结与变形研究[D]. 北京: 北京交通大学, 2014.
SHI Feng. Consolidation and deformation of thawing soil under dynamic loading[D]. Beijing: Beijing Jiaotong University, 2014.(in Chinese).
[11] TABER S. Frost heaving[J]. Journal of Geology, 1929, 37: 428-461.
[12] 张虎. 高温-高含冰量冻土沉降变形机理分析及数值计算[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2013.
ZHANG Hu. Mechanism analysis and numerical simulation on the settlement of warm and ice-rich permafrost[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, 2013.(in Chinese)
[13] 肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J]. 深圳大学学报理工版, 2017, 34(5):501-508.
XIAO Chengzhi, LI Xiaofeng, ZHANG Jingjuan. Effect of compaction degree and water content on performance of sandy silt[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(5):501-508.(in Chinese)
[14] 马田田,韦昌富,周家作,等. 土体的冻结特征曲线和持水特性[J]. 岩土工程学报,2015,37(s1): 172-177.
MA Tiantian,WEI Changfu,ZHOU Jiazuo,et al. Freezing characteristic curves and water retention characteristics of soils [J] Chinese Journal of Geotechnical Engineering,2015,37(s1) : 172-177.(in Chinese)
[15] 朱林楠,李东庆,郭兴民. 无外荷载作用下冻土模型试验的相似分析[J]. 冰川冻土,1993,15(1):166-169.
ZHU Linnan, LI Dongqing, GUO Xingmin. Simulitude analysis of modeling test for chargeless pressure in the freezing-thawing process of soil[J]. Journal of Glaciology and Geocryology,1993(1):166-169.(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(No.2(111-220)):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(No.2(111-220)):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(No.2(111-220)):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(No.2(111-220)):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(No.4(331-440)):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(No.2(111-220)):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(No.5(441-550)):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(No.2(111-220)):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(No.2(111-220)):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(No.4(331-440)):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(No.5(441-550)):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received:2017-06-26;Accepted:2017-12-01
Foundation:National Natural Science Foundation of China (41771078);Foundation of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZT-19); Scientific and Technical Projects of the Transport Department of Gansu Province (2014-03); Open Fund Project of Qinghai Provincial Transportation Science and Technology Institute (2016-01-04)
Corresponding author:Associate professor ZHANG Ze. E-mail: zhangze@lzb.ac.cn
Citation:ZHANG Kun, ZHANG Ze, SHI Xiangyang, et al. The temperature and pore water pressure in soil subjected to dynamic load[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(2): 111-118.(in Chinese)
基金项目:国家自然科学基金资助项目(41771078); 冻土工程国家重点实验室自主研究资助项目(SKLFSE-ZT-19);甘肃省交通运输厅科技资助项目(2014-03);青海省交通科学研究院开放基金资助项目 (2016-01-04)
作者简介:张坤(1981—),男,甘肃省交通科学研究院有限公司高级工程师、博士.研究方向:黄土道路工程及季冻区工程与环境.E-mail:zhangkun2020@163.com
引文:张坤,张泽,史向阳,等.动荷载下土体温度和孔隙水压力的变化规律[J]. 深圳大学学报理工版,2018,35(2):111-118.
更新日期/Last Update: 2018-03-07